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Abstract

Representing structured text from complex documents typically calls for different machine
learning techniques, such as language models for paragraphs and convolutional neural networks
(CNNs) for table extraction, which prohibits drawing links between text spans from different
content types. In this article we propose a model that approximates the human reading pattern
of a document and outputs a unique semantic representation for every text span irrespective
of the content type they are found in. We base our architecture on a graph representation of
the structured text, and we demonstrate that not only can we retrieve semantically similar
information across documents but also that the embedding space we generate captures useful
semantic information, similar to language models that work only on text sequences.

1 Introduction

When reading a document, people naturally
switch between very different reading patterns.
The pattern for reading a table generally in-
volves a sort of reverse L-shaped scan over
to the row and up to the column label whilst
for a paragraph the order is top-to-bottom,
left-to-right in written English. A person can
also map information collected by different
reading patterns into the same semantic space.
For example, one can relate a number repre-
senting gross-earnings-per-share read from a
table to the same figure written in a paragraph.

In principle, this is just a generalised
statement of the distributional hypothesis

that underpins modern NLP approaches:
words that occur in similar contexts purport
similar meanings [1]. In the NLP literature
the ”context” has typically been understood
as a sequence of word tokens. In a realistic
model of reading, we believe the context
must be variable and a person chooses to
apply different context patterns based on page
semantics.

There has been great progress in the Natu-
ral Language Processing (NLP) literature by
treating different reading patterns as separate
problems. For paragraphs, language models
like BERT [2] can be used to generate vector
representations of text as inputs into down-
stream NLP tasks. For more complex reading
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patterns like tables, methods like [3] leverage
computer vision models to identify tables and
then other algorithms to further decompose
the tables into a useable data-structure.

To build systems that can read documents
like a person, however, we need to go further
than this. On addressing a page, such systems
need to work out the required reading pattern
for a specific content type (paragraph, table,
etc. . . ) and then create a representation
that is interoperable with representations
generated with different reading patterns on
other content types.

There are large benefits to pursuing this
type of holistic document reading model.
Most business documents, research papers,
slide decks etc., require readers to deploy
multiple different reading styles to understand
the nuance of the content. Needing to build
2 or more systems to read different parts of
the document is expensive and means numeric
content in tables is then kept separate from
narrative content. One can write a 3rd piece of
software to merge the datasets together again
ex-post-facto, but this is clearly sub-optimal
and not what a person does.

The most relevant research in this area
has focused on building systems that can
complete named entity detection (NED) tasks
on documents like shopping receipts [4] or
scanned company filings [5]. These images
will often be poor quality and the text may
be misaligned so optical character recognition
can fail and/or the text can come out in a
jumbled order. As a result, researchers need
to include extra visual cues in their models
to build in some redundancy and whilst none
of these methods addresses reading strategy
directly, they provide interesting insights as to
how we might proceed.

LayoutLMv2 [6] and LAMBERT [7] both
modify the positional encoding that BERT
uses for text sequences to include information
about the 2D positioning of text tokens on
a page. The positional encoding then works
the same way as BERT so the model can
increase or decrease emphasis on tokens based
on either their relative positions to a central
token, or their absolute position on the page.
StructText [8] enriches the input by grouping
tokens into contiguous sequences then having
both token and sequence level representations
as inputs to a BERT-like model. This aims to
capture the fact that there may be multiple
levels of semantic grouping on a page, token,
line, paragraph etc.

The work of Y. Hua & al.[9] takes a slightly
different approach: their model uses unmod-
ified BERT vectors but then builds a graph
of the page where text tokens have a directed
edge to other tokens in the same line and
the line immediately above them. This graph
is used as the input into a graph attention
network (GAT,[10]) which can be trained on
specific named entity recognition tasks.

These methods perform well on benchmark
NED tasks so we can conclude the inclusion of
extra context in this way is valuable, however,
the idea of reading strategy is somewhat
more refined than this. We would expect, for
example, that given a number in a table, a
good holistic reading model would be able to
highlight the row and column headers and
perhaps the table title and other information
needed to identify the semantic meaning of
the number. This information can exist at
a variable distance from the number and
associative visual information. For example,
similar alignments of numbers leading up to
a text span in a columns play key roles in
a person being able to identify the correct
reading pattern. This more complex idea
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of reading strategy cannot be modelled in
existing architectures.

In this paper we introduce a model that
given a piece of text in a document with para-
graphs, lists, tables etc., can identify the cor-
rect reading pattern to apply, and then uses
it to build an embedding vector which usefully
represents the semantic meaning of the text.
Following a similar approach to [11], we eval-
uate this model on a set of publicly available
financial reports, using several tests to show
that our vectors draw information from sensi-
ble reading patterns given different page con-
texts (tables, lists, paragraphs etc.) and that
vectors that represent text with similar seman-
tic meanings cluster together in the embedding
(Euclidian) space.

2 Methodology

The basic approach we take here is to model a
page in a document as a directed graph, where
each vertex in the graph is a sensible unit of
text and each edge is a potential way a per-
son’s eye may move from one unit of text to an-
other when reading the document. This graph
is meant to model all the potential reading pat-
terns a person is likely to deploy. We then use
a Graph Neural Network with self-attention
mechanism (through transformer encoder lay-
ers) to try and learn the correct reading pat-
tern from the set of potential reading patterns
when creating the vertex representations. If
our model works, the attention weights should
activate/deactivate vertices that sit on sensible
reading pathways. The output of the model is
an embedding vector for each vertex that is a
weighted average over the context the model
determines as the correct reading pattern for
that situation.

2.1 Graph Definition

When defining our graph, the first task is
to generate “sensible units of text” we call
“spans”. To generate spans, we first arrange
text tokens into lines based on the bottom
coordinate of their bounding box. We then
cut these lines where we think the whitespace
separation between tokens indicates they
belong to separate columns. We use an
optimisation algorithm to do this but note
that other authors do something similar with
CNN architectures [9].

Once we have defined spans, we draw up to
4 edges between each span based on the 4 pos-
sible movements your eye can make to when
addressing the page at that span: up, down,
right, and left. We define each edge as the
connection to the closest neighbour span when
moving in that direction on the page. The re-
sult is a graph G, with vertices V, where each
vi has a neighbourhood e(vi) with up to 5 ver-
tices in it, the vertex above, below, left, right
and the vertex vi itself.

In most cases, we find that if vi has a
directed edge to vj then typically vj will have
the reverse edge back to vi and so the graph
is ‘mostly’ undirected. However, there are
important cases where this is not true, for
example, if a title in centrally aligned on the
page with two columns of text underneath it,
reading order dictates you read the column
on the left first in written English, not both
simultaneously.

Although we focus on PDF files in this arti-
cle this approach allows us to represent infor-
mation for any kind of document regardless of
their layouts (A4 landscape, portrait etc.,) or
their type (PDF, .xlsx, .docx etc.,) and so gen-
eralises well to other document understanding
use cases.
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2.1.1 Vertex feature vector generator

The next step in graph creation is to convert
the text spans into feature vectors that
serve as the inputs into our neural network.
There are many language modelling methods
available in the literature for converting text
tokens into fixed length vector e.g., BERT,
Word2Vec, continuous bag of words (CBOW)
etc. In our use case there are a couple of added
complications in deploying these models:
First, our documents contain many tables as
well as text and, in the tables, there are many
numbers and dates that occur in spans on
their own. Language models are well known
to represent numbers poorly [12].
Secondly, they also contain financially specific
language that studies such as [13] have shown
differs significantly from standard English.
For example, words such as ‘liability’ have
a completely different meaning in financial
documents to the common English usage.

We initially experimented with using
BERT base and a CBOW model that we
trained on a corpus of financial documents.
To create a span vector, we tried averaging
over all the vectors either model produced for
a span as well as using the [CLS] token in
BERT base following the work of H. Choi &
al. [14]. We also tried different strategies for
masking numbers and dates.

In the end we found that we got the best per-
formance by masking numbers by their magni-
tude (i.e., tens, hundreds, thousands, and mil-
lions) and by adding extra keywords to indicate
whether the number is a currency, a percent-
age or simply a basic quantity. For dates we
masked them to tokens for day, month, year,
and quarter. We chose to use BERT instead of
CBOW for this study because it can take into
account out of vocabulary tokens and therefore
is more flexible. We use BERT base model for

this set of experiments but we have no doubt
that results could be boosted by using a finan-
cial fine-tuned model.

2.1.2 Relative position information

In addition to vertices intrinsic features, we
compute the relative position of vertices on the
page using Manhattan distance [15]. The ge-
ometric nature of our graph means that edges
are drawn between vertices along two perpen-
dicular axes allowing us to calculate the rela-
tive Manhattan distance by just counting the
hops between vertices. We store this informa-
tion in the matrices Pvert and Phor for the verti-
cal and horizontal axes respectively with Pvert

and Phor ∈ ZN×N , N being the number of ver-
tices in the graph.

2.2 Graph Neural Network

When choosing a neural network architecture
to run on a graph [16], we considered that
Graph Convolutional Networks (GCN) are not
suitable for the problem at hand because the
reading pattern is not uniformly distributed
in the vertex neighbourhood. For example,
column headers may be many hops away from
the vertex of interest in a single direction.
Attention-based graph networks are more
suited to this problem because they allow
messages to be passed on longer distances
by altering the attention weights in the net-
work. We opted for a transformer [17, 2, 18] as
the attention mechanism for two main reasons:

• We experimented initially with the flat
attention mechanism form [10] and found
that as the attention is applied elementwise it
couldn’t learn to adapt to sequences of hops
like ‘number-number-column header’ rather
it just filtered out particular elements of the
input vector. The transformer mechanism
assigns attention weights as a function of all
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elements in the input vector and its neighbours
which worked better.

•We felt that a pure message passing mech-
anism might be too brutal a filter when consid-
ering a single span. For example, given a num-
ber in a table with a reverse L-shaped reading
pattern, this would mean that the model can
only ‘perceive’ vertices directly on this traver-
sal. It seems likely a person reading a table also
considers some information from other vertices
in their peripheral vision or remembers vertices
like the title of the page and merges this in-
formation in her internal representation of the
number. We want an architecture that is flexi-
ble enough to allow us to experiment with the
interplay between pure message passing and
other types of information flow via additional
edges and positional encoding.

2.2.1 Model architecture

Our model input is a graph G, with a set of
N vertices V with each vi having a neighbour-
hood e(vi) which is a set of up to 5 vectors in
V as defined in section 2.1 above. An adja-
cency matrix A encodes the edges between the
vertices. The first layer of the GNN takes V
and produces a set of modified vectors V ′ with
the same dimension as V by passing each vi
as the query and e(vi) as the key into a trans-
former encoder (figure 1) and outputting v′i as
an attention weighted average over the neigh-
bourhood e(vi). So, for each vertex, for each
forward pass, we calculate:

~vi =

N∑
j

αijV ~vj (1)

with

αij =
1√
d

Aij(Q~vi ·K~vj)∑N
j Aij(Q~vi ·K~vj)

(2)

where αij is the attention coefficient of
vi to vj , Q,K and V are query, key and

value matrices respectively, Aij ∈ [0, 1] is the
adjaceny matrix element for the i,j pair. d is
the features dimension of the vertices vectors.
For subsequent layers we then take v′i as
input with e(v′i) now being the neighbourhood
of vectors in V ′ and so on. We decided to
evaluate the same GNN architecture in two
different configurations:

• A message passing network case where
edges are limited to the 5 nearest neighbours:
(Aij = 1 if |Pij,vert| ≤ 1 or |Pij,hor| ≤ 1) as
this allow us to preserve the geometry of the
document graph as an inductive bias and we
want to model how information flows from one
span of text to another over the graph. In this
architecture information can flow from vertices
that are very far away from each other with the
maximum accessible distance a function of the
number of layers in the model but at the cost
of an exponential damping of information flow.
• A regularised model to compensate for

long distance information damping in the
purely message passing architecture. This ver-
sion includes an arbitrary number of edges
(Aij = 1 if |Pij,vert| ≤ x or |Pij,hor| ≤ x with
x ∈ {5, 8}). Because the geometry of the graph
is partially lost in this configuration, we apply
the following regularisation inside the trans-
former expression:

~vj =

{
~vj if

√
P 2
ij,vert + P 2

ij,hor ≤ 1

~0 otherwise
(3)

It dictates a uniform distribution of atten-
tion on a neighbourhood of order > 1 that is
anti-correlated with the attention coefficients
from the vertex nearest neighbours. Apply-
ing positional encoding and or distance regu-
larisation can only be done in a relative way
as graphs don’t have a fixed shape (unlike im-
ages) and padding the graph with empty ver-
tices (such as in BERT sequences) is not an
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Figure 1: Architecture of the Graph Neural Network for training. Each vertex goes through a
series of Nlayers encoding layers that contains self-attention.

option for computation time and memory rea-
sons. Introducing this information inside the
self-attention layers to the key vector is there-
fore the natural solution. Discussion about rel-
ative positional encoding in transformers can
be found in this work [19].

2.2.2 Training objective

Typically, language models like CBOW and
BERT are pre-trained on an unsupervised task
where tokens in a sequence are masked, and
the training objective is to predict the masked
tokens. This does not work in our case as for
two reasons: 1) to mask tokens effectively we
need to know what tokens are important in
advance of calculating the loss. In our case,
reading pattern is learned dynamically so we
do not have this information. 2) Many of our
tokens are numbers that have little semantic
information and so predicting them is not

challenging.

To get around this issue we trained the
model in a supervised manner using a con-
trastive loss function [20]. This allows us to
identify information we think should be closer
together/further away in embedding space and
force the model to learn the reading patterns
that make this happen.

We train our model using pairs of graphs
G1 = (V1, E1) and G2 = (V2, E2) that we bind
in single input graph G = (V1 + V2, E1 + E2)
(figure 1). We do not need to add a separation
vertex between the graphs as no edges exists
between vertices of graphs 1 and 2, therefore no
information can flow between the two graphs.
We label pairs of semantically similar vertices
(vanchor ∈ V1 and vpos ∈ V2) between graphs
and vertex v ∈ V2/vpos most similar to vanchor
is chosen as vneg after each training iteration.
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We use the following definition of contrastive
loss:

L = ||~vanchor − ~vpos||
+ max(0,m− ||~vanchor − ~vneg||) (4)

with m the margin hyperparameter. By ap-
plying a max() function on the second part of
the formula we intend to decorrelate the opti-
misation of the positive distance from the neg-
ative one.

2.2.3 Training and validation datasets

We use public financial reports from various
companies to train and evaluate our model.
For each company we downloaded two quar-
terly reports (Q2 and Q3 2020) from the in-
vestor relations section of publicly listed com-
panies’ websites. These reports are interesting
to us because, whilst there is a set of informa-
tion that they legally must contain regarding
company performance, there is a large variety
of other information and different formatting
types (paragraphs, lists, tables etc.,). As a re-
sult, documents have some shared information
but presented in different reading contexts.

The training and validation corpus consists
of 70 pairs of pages graphs, each of them con-
taining an average of 100 vertices and rep-
resenting a training batch. We filtered out
batches containing only a few vertices but
still have variable batch sizes for the training.
The total number of labelled pairs of vertices
is ∼7000. The Model hyperparameters are
Nlayers=8 feed-forward + transformer layers of
size 360 each (equivalent to the feature size, no
compression is made) and it was trained for 400
epochs. We also used 5-fold cross-validation to
obtain the final validation loss and accuracy.

The model was subsequently tested on a cor-
pus of 10 pairs of pages and the results are
presented in the next section.

3 Experiments

We have conducted a set of experiments to
demonstrate that our model has the ability to
capture 2D reading order by showing 2D read-
ing patterns in tables that it creates a the se-
mantic meaningful embedding space.

3.1 Similar vertex pairing task

Our first task is a straightforward out-of-
sample test of whether our model can find ver-
tices we have labelled as pairs in our corpus. To
do this we take every labelled vertex and calcu-
late the Euclidean distance between its vertex
embedding and every other vertex in the same
document its pair can be found in. So, the test
is out of all the vertices in document 2, can
the model match the one in document 1 with
its most similar counterpart.

Specifically, we take 2 documents and calcu-
late their vertices embedding sets V ′1 and V ′2 for
document 1 and 2 respectively using the same
trained GNN model and where document 2 has
K vertices. Then assuming we have a labelled
vertex v′1,i with its pair v′2,i, we first calculate

a vector di ∈ RK of distances between v′1,i and
every other vertex in V ′2 using

di,k = ||~v′1,i − ~v′2,k|| ∀ k ∈ K (5)

For corpus C of out of sample documents
with M labelled vertices in total we define the
total score as

score(C) =
1

M

M∑
i

{
1 if arg min(di) = i

0 if arg min(di) 6= i

(6)

We tested the on a range of different span
types i.e., from paragraphs, lists, and tables.
For general text in paragraphs the model per-
forms extremely well but we note that other
language modelling approaches based purely
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on text sequences would be expected to per-
form as well on this type of task, so we focus
our analysis on the performance of our model
on tables.

We also have evaluated one of the state-of-
the-art language models with 2D structural in-
formation encoding, LayoutLMv2[6], for com-
parison. To run this experiment on Lay-
outLMv2 we used its pretrained version avail-
able on Huggingface. Since it outputs an em-
bedding vector for each word token on a page,
we reconstructed span embeddings by averag-
ing the tokens embeddings included in the span
using our existing graph model to determine
what tokens should be in what span.

Figure 2: Comparison of model accuracies for
finding matching vertex in top 1, 3, 5 and 10
predictions. 1st order neighbourhood corre-
sponds to results for the unregularized message
passing model.

We started our study by comparing ac-
curacies of the pure message passing model
versus the regularised one (figure 2). Both 5
order and 8 order neighbourhood regularised
model exhibit significant improvement in
the similarity matching task confirming that
pure message passing results in information
damping and reduces the efficiency of the
model. Higher order neighbourhoods seem to
marginally increase the probability of finding

the right match whether considering the top
1, 3, 5 or 10 predictions.

Table 1 shows how results exhibit high ac-
curacy in the regularised models. The accu-
racy of the unregularized model also slightly
reduces as the table size increases. We inter-
pret this drop as a limitation of pure message
passing GNN because if there is any noise in
the statistical relationships between vertices in
the graph then this will be multiplied by the
number of hops. This highlights the exponen-
tial damping effect where the deeper the vertex
lies in the table the harder it is to distinguish
it from surrounding table vertices.

LayoutLMv2 model performance for this
task is significantly below ours. Which we
think can be explained by 3 main factors:
1) LayoutLMv2 has no concept of a span as it
embeds only word tokens. We think this is a
key issue as the vertical typesetting of a page
into columns is based on the alignment of spans
and not individual word tokens. Without hav-
ing a concept of a span, models can’t capture
this important property of page semantics.

2) Our model is specifically trained to opti-
mise unique representations of spans and there-
fore it is forced to find information on the page
that can generate a vector for a number in a
table that is unique from other numbers, even
if the tokens themselves are the same. In con-
trast methods like LayoutLMv2 focus on pre-
dicting individual word tokens which in the
case of numbers in tables is a somewhat ar-
bitrary task (as discussed above).

3) We masked every numerical span before
generating embeddings whereas LayoutLMv2
and other BERT based sequential models to-
kenize specific numbers before generating the
embeddings. As mentioned in a previous sec-
tion these numeric representations are known
to be problematic [12].

In the following experiments we use the reg-
ularised model with a neighbourhood of order
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# of columns LayoutLMv2 Our model Our model Our model
1st order 5th order 8th order

2 0.58∗ 0.747 0.872 0.878

3 - 0.729 0.879 0.884

4 - 0.702 0.882 0.89

Table 1: Vertex similarity retrieval accuracies for different table sizes. ∗LayoutLMv2 has only be
tested for tables with ≤2 columns because of the limitation of the model input tokens sequence
(512).

8 as our reference model.

3.2 Analysis of semantic usefulness
of embeddings

To check if the model really is learning the ex-
pected reading pattern, rather than fitting to
some arbitrary features, we generated atten-
tion overlays onto pages of our documents us-
ing the attention rollout method proposed by
S. Abnar & al. [21]. Figure 3 shows the atten-
tion rollout maps overlayed on2 different pages
for 3 different vertices. In each case the red dot
is the vertex of interest and the colour maps on
the page show the different attention weights
for each vertex the model has used to generate
the vertex of interest’s vector.

We clearly see from these maps the model is
learning the expected reading pattern. Panel
a) shows how when a span in a paragraph is
selected the model has an exponentially decay-
ing attention map moving above and below the
span in the paragraph. Panel b) and c) show
examples of table cells and how the model
picks up row and column header information,
concentrating most on the row label as this
tends to contain the most semantically impor-
tant information for identifying the semantic
meaning of the number. Examples of attention
maps for a single page with different regu-
larisation orders can be found in the appendix.

We also researched how different embed-

dings clustered together. We would expect,
for example, vertices from similar columns
or rows in tables to cluster together in em-
bedding space. To analyse this, we projected
the embeddings in 2D using T-SNE [22] and
plotted vertices clusters. Figure 4 shows table
vertices from same section clustering together
meaning that vertices embeddings contain
information about their row. Moreover, within
sections one can see that vertices cluster by
pair corresponding to the pair of columns in
the table. This is a clear indication that the
model reads column and row information to
create a unique semantic representation of
each vertex. The vertices appear to be initially
clustered by row section and then row clusters
can be cut into column components suggesting
that the model prioritise row information for
the vertex embeddings in this example.

Finally, we researched compositionality. In
the original Word2Vec paper [11] one of the
key findings was that if ~wking represents an em-
bedding for the word “king” generated by the
Word2Vec model then ~wman− ~wking + ~wwoman

would generate a vector closest in embed-
ding space to ~wqueen. The intuition behind
this experiment is that presumably the words
“man” and “woman” will occur in similar se-
quences in general, however, there is likely to
be some language that is idiosyncratically gen-
dered and so “man” will be pushed towards

9



Figure 3: Projected attention pattern on documents for 3 examples datapoints. a) for a page
with only paragraphs. b) and c) for a table document. Spans of text not highlighted in the
figure contribute only a fraction of a percent to the attention and therefore are not considered
here.

other male words and “woman” towards other
female words. Similarly, “king” and “queen”
will occur in similar sequences but also both
be affected by the same idiosyncratically gen-
dered language.

The result is that ~wman − ~wking effectively
suppresses idiosyncratic maleness as both vec-
tors will be in similar positions relative to more
male words. Similarly, ~wwoman− ~wqueen cancels
out idiosyncratic female word correlations and
so the resulting vectors are similar once gen-
dered language is removed.

Column clustering in figure 4.c hints at the
possibility of doing an analogous task. In the
table example below (table 2) we would expect
that there is idiosyncratic information about
“earnings” or “costs” contained in the table
and surrounding text. So similarly, (Earnings
2019)-(Earnings 2020)+(Costs 2019) should
generate a vector close to the embedding for

2019 2020

Earnings (earnings 2019) (earnings 2020)

Costs (costs 2019) (costs 2020)

Table 2: Example of table for compositionality
experiment

(Costs 2020).

To test this, we evaluated the truthfulness
of the following equation:

~vl,i − ~vk,i + ~vk,j = ~vl,j (7)

where ~vk,i is the value in the kth column and
the ith row and ~vl,i is in the lth column and
the ith row with k<l. We applied equation 7
to 3 tables of our test set with variable row
lengths (20, 32 and 35 rows). This generated
87 (~vl,i − ~vk,i) vectors which we then applied
to every row from their respective tables cor-
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Figure 4: T-SNE Projection of vertices embedding vectors in 2D. a) Document page example,
the different row label sections that the datapoints are part of are highlighted in green and
orange. For each row we looked for the embeddings in both columns b) Projected distribution
of table values per table section. c) Same projection with different color for each row and shape
of the marker to distinguish the two columns

responding to 2649 applications of the equa-
tion to find exact matches like in the earnings
example above. We recorded an exact match
success rate of 78.8%, demonstrating that the
embedding space exhibits compositional prop-
erties.

4 Conclusion

Creating useful distributed representations of
word sequences has been a key driver of success
in benchmark NLP tasks. However, as we have
discussed in this article, sequences are only one
of the patterns a person deploys when reading
most documents. If we are to replicate the suc-
cess of models like Word2Vec, Glove or BERT
across the full range of reading scenarios we
need to build models that generate distributed
representations for all these patterns.

In this article we presented a method that
can approximate realistic human reading pat-
terns across all the typical document reading

scenarios. Our method works by transform-
ing structured text into a graph of spans, then
training a Graph Neural network to represent
semantically similar spans with similar vectors
using a contrastive loss objective.

We benchmarked our model on table content
embeddings because they constitute the most
challenging part of the problem for standard
sequence-based language models. We demon-
strated that our learnt reading pattern is a
good first approximation of the human one, al-
lowing us to retrieve similar datapoints in ta-
bles from different documents with an accuracy
of 89%. We also showed that, in analogy to lan-
guage models, the embedding space we create
exhibits useful semantic properties that allow
similar text clustering and compositionality.

Our contribution extends the literature on
language models to the full text of documents,
particularly business or academic documents,
that contain tables and lists intermingled with
paragraphs and narrative text. This paves the
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way for exciting NLP tasks such as question
answering, Named Entity Recognition and sen-
timent analysis to be explored fully in such
documents.
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Appendix

Figure 5: A single page table attention rollout maps for the three tested model configurations.

Figure 5 shows the difference of attention on the row labels for the models we tested. We
clearly observe the exponential damping of attention in the message passing case. Moreover
row label attention appears peculiar. Some labels contribute strongly for values on different
rows and some others have competing attention with numbers in the table (for vertices of
indices 35 to 45). It is in accordance with the worst vertex similarity matching task observed
for this model. The configuration including 5 orders of neighbourhood with regularisation
exhibit a more structured pattern of attention with most of it on the row labels nevertheless
those labels seem to contribute to multiple row values representation. Finally the 8 order
neighbourhood model seems to capture maximum attention from the labels on the same row
as their corresponding values and a general context information given by the uniform attention
to all other nodes. We note as well that for all three models the attention to the row labels
present some asymmetry toward upper left triangle translating into more relative attention to
vertices on the left and above which is what is expected for a reading pattern in a table.
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