
(54) SYSTEMS AND METHODS FOR A DATA
INTEGRATION CONNECTOR

(71) Applicant: BlackRock, Inc., New York, NY (US)

(72) Inventors: Shaila Abraham, New York, NY (US);
James Capps, New York, NY (US)

(73) Assignee: BlackRock, Inc., New York, NY (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 206 days.

(21) Appl. No.: 17/947,838

(22) Filed: Sep. 19, 2022

Related U.S. Application Data

(60) Provisional application No. 63/255,831, filed on Oct.
14, 2021.

(51) Int. Cl.
H04L 9/32 (2006.01)
G06F 9/54 (2006.01)
G06F 21/64 (2013.01)
H04L 9/40 (2022.01)

(52) U.S. Cl.
CPC H04L 9/3247 (2013.01); G06F 9/547

(2013.01); G06F 21/64 (2013.01); H04L
63/0281 (2013.01); H04L 63/0876 (2013.01);

H04L 63/10 (2013.01); H04L 63/105
(2013.01); H04L 63/20 (2013.01)

(58) Field of Classification Search
CPC ... H04L 9/3247; H04L 9/3213; H04L 9/3242;

H04L 9/0891; H04L 9/0819; H04L 63/10;
H04L 63/083; H04L 63/062; H04L 9/50;

H04L 63/0815; H04L 9/3218; H04L
9/0897; H04L 63/18; H04L 9/3239; H04L

63/0884; H04L 9/3263; H04L 63/20;
H04L 9/321; H04L 41/18; H04L 63/105;

H04L 41/28; H04L 63/102; G06F
21/6218; G06F 21/64; G06F 21/33; G06F

21/45; G06F 21/305; H04W 12/068;
H04W 12/60; H04W 12/108; H04W
12/08; H04W 12/37; H04W 12/069

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

8,296,320 B1 * 10/2012 Corbett H04L 63/10
707/786

2016/0182525 A1 * 6/2016 Zhu H04L 63/20
726/1

2021/0044976 A1 * 2/2021 Avetisov G06F 21/64
2022/0239483 A1 * 7/2022 Sugarev H04L 9/3247

* cited by examiner

Primary Examiner — Kyung H Shin
(74) Attorney, Agent, or Firm — Haynes and Boone, LLP

(57) ABSTRACT

A universal cloud connector is proposed to intake client data
using an integrated application programming interface (API)
that is capable of processing various client data. Specifically,
the integrated API includes at least two layers: (i) an
authentication layer authenticates a client based on a client-
level secret ID such that the client can only access data
resource that is accessible to this particular client; (ii) a data
segregation layer that integrates with the client’s system so
that users of the client (bank) can view and interact with
their bank records that are pulled through the authentication
layer. Thus, the integration API may act as a collection of
micro-services that allow a client’s system to synchronize
data and workflow states with the server in real-time.

20 Claims, 11 Drawing Sheets

US012069185B1

(12) United States Patent (10) Patent No.: US 12,069,185 B1
Abraham et al. (45) Date of Patent: Aug. 20, 2024

U.S. Patent Aug. 20, 2024 Sheet 1 of 11 US 12,069,185 B1

U.S. Patent Aug. 20, 2024 Sheet 2 of 11 US 12,069,185 B1

U.S. Patent Aug. 20, 2024 Sheet 3 of 11 US 12,069,185 B1

U.S. Patent Aug. 20, 2024 Sheet 4 of 11 US 12,069,185 B1

U.S. Patent Aug. 20, 2024 Sheet 5 of 11 US 12,069,185 B1

U.S. Patent Aug. 20, 2024 Sheet 6 of 11 US 12,069,185 B1

U.S. Patent Aug. 20, 2024 Sheet 7 of 11 US 12,069,185 B1

U.S. Patent Aug. 20, 2024 Sheet 8 of 11 US 12,069,185 B1

U.S. Patent Aug. 20, 2024 Sheet 9 of 11 US 12,069,185 B1

U.S. Patent Aug. 20, 2024 Sheet 10 of 11 US 12,069,185 B1

U.S. Patent Aug. 20, 2024 Sheet 11 of 11 US 12,069,185 B1

SYSTEMS AND METHODS FOR A DATA
INTEGRATION CONNECTOR

CROSS REFERENCE(S)

The present application is a nonprovisional application of
and claims priority under 35 U.S.C. 119 to U.S. provisional
application No. 63/255,831, filed Oct. 14, 2021, which is
hereby expressly incorporated by reference herein in its
entirety.

TECHNICAL FIELD

The present application generally relates to data commu-
nication and intake between different servers, and more
specifically to systems and methods for a data integration
connector.

BACKGROUND

A financial institution such as BlackRock, Inc. needs to
intake various financial data from a number of clients. This
financial data may often have different data types and
formats that are customized for each client. Traditionally, a
specific data integration pipeline API is built for each client
to intake the financial data. However, the scalability of this
data intake pipeline is minimal as a pipeline API designed
for a specific client can rarely be reused for another client.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a simplified block diagram illustrating an
example architecture of a cloud connector framework to
intake data requests from client systems, according to one
embodiment described herein.

FIG. 2 is s simplified block diagram illustrating an
example networked environment that the cloud connector
framework described in FIG. 1 is implemented at, according
to one embodiment described herein.

FIG. 3 is a simplified block diagram illustrating a use case
of the cloud connector framework described in FIG. 1 for
processing a data synchronization request, according to
embodiments described herein.

FIG. 4 is a simplified block diagram illustrating a use case
of the cloud connector framework described in FIG. 1 for
managing data processing exceptions, according to embodi-
ments described herein.

FIG. 5A is a simplified block diagram illustrating a use
case of the cloud connector framework described in FIG. 1
for generating a trading order, according to embodiments
described herein.

FIG. 5B is a simplified block diagram illustrating an
example system flow for the use case described in FIG. 5A,
according to embodiments described herein.

FIG. 6 is a simplified block diagram illustrating a use case
of the cloud connector framework described in FIG. 1 for
retrieving and managing external documents, according to
embodiments described herein.

FIG. 7 is a simplified block diagram illustrating an
example structure of the cloud connector, according to
embodiments described herein.

FIGS. 8A and 8B is a simplified logic flow diagram
illustrating a method of integrating client data and service
via the cloud connector at a multi-tenant server, according to
embodiments described herein.

FIG. 9 is a block diagram illustrating example compo-
nents of a computing system for implementing embodiments
described in FIGS. 1-8, according to one embodiment.

Embodiments of the present disclosure and their advan-
tages are best understood by referring to the detailed
description that follows. It should be appreciated that like
reference numerals are used to identify like elements illus-
trated in one or more of the figures, wherein showings
therein are for purposes of illustrating embodiments of the
present disclosure and not for purposes of limiting the same.

DETAILED DESCRIPTION

Provided are methods utilized for a data integration
connector. Systems suitable for practicing methods of the
present disclosure are also provided.

A universal cloud connector is proposed to intake client
data using an integrated application programming interface
(API) that is capable of processing various client data.
Specifically, the integrated API includes at least two layers:
(i) an authentication layer that authenticates a client based
on a client-level secret ID such that the client can only
access a data resource that is accessible to this particular
client; (ii) a data segregation layer that integrates with the
client’s system so that users of the client (e.g., a bank) can
view and interact with their bank records that are pulled
through the authentication layer. Thus, the integration API
may act as a collection of micro-services that allow a client’s
system to synchronize data and workflow states with the
server in real-time.

In one embodiment, the integrated API maintains a queue-
ing system such that various clients may sequentially send
data requests to the financial institution server.

FIG. 1 is a simplified block diagram 100 illustrating an
example architecture of a cloud connector framework to
intake data requests from client systems, according to one
embodiment described herein. Diagram 100 shows one or
more client systems 102, an API management system 105,
an access management system 108, a server 120 hosting a
cloud connector 130 and a client portal application 140,
other outside client APIs 150 and/or other entities that
interact with each other to provide data processing services.

In one embodiment, one or more client systems 102 may
initiate a data request with the server 120. For example, the
client system 102 may transmit an HTTP GET message
containing a security token to the API management system
105, which may in turn forward the GET message for
identity authentication to an access management system
108. Upon authenticating the security token from the GET
message by the access management system 108, the client
system 102 may then transmit an HTTP POST message
containing the security token and the data request to the API
management system 105, which may in turn pass on the data
request to the cloud connector 130 at the server 120.

In one implementation, the data request may comprise
any of a data synchronization request, a data processing
exception handling request, an out-of-order record handling
request, a data processing throughput control request, a
trading request, and/or the like that originated from the client
system 102. Different use cases of processing different data
requests are discussed in relation to FIGS. 3-5B.

In one embodiment, the cloud connector 130 may be
implemented as any combination of an API, a stream appli-
cation, a service layer, a persistence layer, and/or the like.
Further discussion of the structure of the cloud connector
130 can be found in relation to FIG. 7. At the cloud
connector 130, a micro-gateway 131 may receive the data

US 12,069,185 B1
1 2

5

10

15

20

25

30

35

40

45

50

55

60

65

request from the API management system 105 and route the
data request to the ingestion & callback APIs 132. The
ingestion & callback APIs 132 then confirm identity authen-
tication with the access management system 108, e.g., by
transmitting an HTTP GET message containing a key to the
system 108.

In one embodiment, depending on identity authentication
with the access management system 108, the ingestion &
callback APIs 132 may determine whether the data request
shall be processed. For example, depending on the client
system’s access level, the ingestion & callback APIs 132
may determine whether a data synchronization request can
be processed at all (e.g., whether the client system can
access the requested data for synchronization), and/or an
access level that is to be granted to the client system. For
example, the client system may be granted partial access to
a certain portion of data at the server 120 depending on the
identity authentication with the access management system
108. The ingestion & callback APIs 132 may then send the
data request to the data stream service 135.

In one implementation, data stream application 135 may
adopt streams API 136 to process data streams. Each source
topic in a stream topology has a corresponding processor
(consumer) class. If a source topic is in multiple stream
topologies, it could associate with different processor classes
(different consumer groups). For example, a cc-account-
complete topic is the sink topic for “Process Sync Request
Stream” topology and source topic for “Process Pending
Position Stream” topology.

In one embodiment, one or more client systems 102 may
send data requests to the cloud connector 130 simultane-
ously, intermittently, or periodically. Thus, the cloud con-
nector 130 may receive a number of data requests from a
plurality of clients in a batch. The cloud connector 130
maintains and stores at, a queueing system at the connector
130, the number of data requests, and processes the number
of data requests via asynchronous calls (as depicted by half
arrows in diagram 100).

For example, the ingestion & callback APIs 132 may call
client APIs to reach the client portal 140. Specifically,
service authentication may be performed between the client
portal 140 and the cloud connector 130, e.g., via active
directory federation services (ADFS). Upon service authen-
tication, the ingestion & callback APIs 132 may send a
notice to the data stream service 135 to initiate the data
stream processing. The data stream API 136 may then call a
client API 150 via the web proxy to perform the correspond-
ing data processing task. An API status from the client APIs
150 may then be updated with the client portal 140. On the
other hand, the data stream API 136 may update the data
processing status with the client portal 140 in real time.

FIG. 2 is s simplified block diagram 200 illustrating an
example networked environment that the cloud connector
framework described in FIG. 1 is implemented at, according
to one embodiment described herein. In one embodiment,
block diagram 200 shows a system including a user device
210 which may be operated by a user 240, data vendor
servers 245, 270 and 280, a server 120, and other forms of
devices, servers, and/or software components that operate to
perform various methodologies in accordance with the
described embodiments. Exemplary devices and servers
may include device, stand-alone, and enterprise-class serv-
ers which may be similar to the computing device 900
described in FIG. 9, operating an OS such as a
MICROSOFT® OS, a UNIX® OS, a LINUX® OS, or
another suitable device and/or server-based OS. It can be
appreciated that the devices and/or servers illustrated in FIG.

2 may be deployed in other ways and that the operations
performed, and/or the services provided by such devices
and/or servers may be combined or separated for a given
embodiment and may be performed by a greater number or
fewer number of devices and/or servers. One or more
devices and/or servers may be operated and/or maintained
by the same or different entities.

The user device 210, data vendor servers 245, 270 and
280, and the server 120 may communicate with each other
over a network 160. User device 210 may be utilized by user
240 (e.g., a driver, a system admin, etc.) to access the various
features available for user device 210, which may include
processes and/or applications associated with the server 120
to receive an output data anomaly report.

User device 210, data vendor server 245, and the server
120 may each include one or more processors, memories,
and other appropriate components for executing instructions
such as program code and/or data stored on one or more
computer readable mediums to implement the various appli-
cations, data, and steps described herein. For example, such
instructions may be stored in one or more computer readable
media such as memories or data storage devices internal
and/or external to various components of system 200, and/or
accessible over network 160.

User device 210 may be implemented as a communication
device that may utilize appropriate hardware and software
configured for wired and/or wireless communication with
data vendor server 245 and/or the server 120. For example,
in one embodiment, user device 210 may be implemented as
an autonomous driving vehicle, a personal computer (PC), a
smart phone, laptop/tablet computer, wristwatch with appro-
priate computer hardware resources, eyeglasses with appro-
priate computer hardware (e.g., GOOGLE GLASS®), other
type of wearable computing device, implantable communi-
cation devices, and/or other types of computing devices
capable of transmitting and/or receiving data, such as an
IPAD® from APPLE®. Although only one communication
device is shown, a plurality of communication devices may
function similarly.

User device 210 of FIG. 2 contains a user interface (UI)
application 212, and/or other applications 216, which may
correspond to executable processes, procedures, and/or
applications with associated hardware. For example, the user
device 210 may receive a message indicating a data service
processing confirmation (e.g., data synchronization com-
pleted, data exception report generated, etc.) from the server
120 and display the message via the UI application 212. In
other embodiments, user device 210 may include additional
or different modules having specialized hardware and/or
software as required.

In various embodiments, user device 210 includes other
applications 216 as may be desired in particular embodi-
ments to provide features to user device 210. For example,
other applications 216 may include security applications for
implementing client-side security features, programmatic
client applications for interfacing with appropriate applica-
tion programming interfaces (APIs) over network 160, or
other types of applications. Other applications 216 may also
include communication applications, such as email, texting,
voice, social networking, and IM applications that allow a
user to send and receive emails, calls, texts, and other
notifications through network 260. For example, the other
application 216 may be an email or instant messaging
application that receives a prediction result message from
the server 120. Other applications 216 may include device
interfaces and other display modules that may receive input
and/or output information. For example, other applications

US 12,069,185 B1
3 4

5

10

15

20

25

30

35

40

45

50

55

60

65

216 may contain software programs for asset management,
executable by a processor, including a graphical user inter-
face (GUI) configured to provide an interface to the user 240
to view the data service processing confirmation.

User device 210 may further include a database 218
stored in a transitory and/or non-transitory memory of user
device 210, which may store various applications and data
and be utilized during execution of various modules of user
device 210. Database 218 may store user profile relating to
the user 240, predictions previously viewed or saved by the
user 240, historical data received from the server 120, and/or
the like. In some embodiments, database 218 may be local
to user device 210. However, in other embodiments, data-
base 218 may be external to user device 210 and accessible
by user device 210, including cloud storage systems and/or
databases that are accessible over network 260.

User device 210 includes at least one network interface
component 219 adapted to communicate with data vendor
server 245 and/or the server 120. In various embodiments,
network interface component 219 may include a DSL (e.g.,
Digital Subscriber Line) modem, a PSTN (Public Switched
Telephone Network) modem, an Ethernet device, a broad-
band device, a satellite device and/or various other types of
wired and/or wireless network communication devices
including microwave, radio frequency, infrared, Bluetooth,
and near field communication devices.

Data vendor server 245 may correspond to a data server
that hosts one or more of databases (or collectively referred
to as 220) to provide datasets such as client data to the server
120. In one embodiment, the data vendor server 245 may be
hosted by one or more client systems 102, or other external
data vendor hosting client data. The database 220 may be
implemented by one or more relational database, distributed
databases, cloud databases, and/or the like.

The data vendor server 245 includes at least one network
interface component 226 adapted to communicate with user
device 210 and/or the server 120. In various embodiments,
network interface component 226 may include a DSL (e.g.,
Digital Subscriber Line) modem, a PSTN (Public Switched
Telephone Network) modem, an Ethernet device, a broad-
band device, a satellite device and/or various other types of
wired and/or wireless network communication devices
including microwave, radio frequency, infrared, Bluetooth,
and near field communication devices. For example, in one
implementation, the data vendor server 245 may send asset
information from the database 20, via the network interface
226, to the server 120.

The server 120 may be housed with the cloud connector
module 130 and the client portal 140 described in FIG. 1. In
some implementations, module 130 may receive data from
database 220 at the data vendor server 245 via the network
260 to complete a data processing request. The generated a
data service processing confirmation may also be sent to the
user device 210 for review by the user 240 via the network
260.

The database 232 may be stored in a transitory and/or
non-transitory memory of the server 120. In one implemen-
tation, the database 232 may store data obtained from the
data vendor server 245. In one implementation, the database
232 may store parameters of the cloud connector model 130.
In one implementation, the database 232 may store a pre-
viously generated data service processing confirmation, and
the corresponding input feature vectors.

In some embodiments, database 232 may be local to the
server 120. However, in other embodiments, database 232
may be external to the server 120 and accessible by the

server 120, including cloud storage systems and/or data-
bases that are accessible over network 260.

The server 120 includes at least one network interface
component 260 adapted to communicate with user device
210 and/or data vendor servers 245, 270 or 280 over network
260. In various embodiments, network interface component
260 may comprise a DSL (e.g., Digital Subscriber Line)
modem, a PSTN (Public Switched Telephone Network)
modem, an Ethernet device, a broadband device, a satellite
device and/or various other types of wired and/or wireless
network communication devices including microwave,
radio frequency (RF), and infrared (IR) communication
devices.

Network 260 may be implemented as a single network or
a combination of multiple networks. For example, in various
embodiments, network 260 may include the Internet or one
or more intranets, landline networks, wireless networks,
and/or other appropriate types of networks. Thus, network
260 may correspond to small scale communication net-
works, such as a private or local area network, or a larger
scale network, such as a wide area network or the Internet,
accessible by the various components of system 200.

FIG. 3 is a simplified block diagram illustrating a use case
300 of the cloud connector framework described in FIG. 1
for processing a data synchronization request, according to
embodiments described herein. The use case 300 may be
implemented at a bank system, which uses the cloud con-
nector 130 to synchronize data records with their client
portal.

For example, a client system 102 may send a synchroni-
zation request to the cloud connector 130, e.g., via an API
105. The cloud connector 130 may then process the syn-
chronization request comprising one or more data records at
step 302, by comparing the source record with the record
with the same key that has been stored in the portal to detect
any change in the source at step 303. At step 305, the cloud
connector 130 may save the source record by inserting,
updating, or deleting the previously stored record with the
same key in the portal based on changes detected in Step
303.

In one implementation, the cloud connector 130 may run
either in Full or Limited Processing mode (e.g., at step 306).
The full mode (e.g., steps 303 and 305) uses the data stream
service 135 to provide scalability, high performance, and
fault tolerance to the API client. However, when the data
stream service 135 is not available for an unpredictable
period, the connector 130 may run in a limited mode, which
adopts single threaded processing and synchronous API calls
with the client portal 140. For multi-table updates, the
connector may perform the update within a single transac-
tion scope.

In one implementation, the cloud connector 130 may take
a form as a collection of collaborating microservices. Each
synchronization request is designated with a unique identi-
fier. Processing steps across microservices are logged for
each request. A combination of the unique identifier and
timestamp is the primary key in the log. In this way, a
monitoring system can observe or assemble the full journey
of a synchronization request through different services from
the log.

FIG. 4 is a simplified block diagram illustrating a use case
400 of the cloud connector framework described in FIG. 1
for managing data processing exceptions, according to
embodiments described herein. The cloud connector 130
implements a data processing exception mechanism to
ensure fault tolerance. For example, when exceptions occur
during processing, the data stream application 136 may

US 12,069,185 B1
5 6

5

10

15

20

25

30

35

40

45

50

55

60

65

initiate the data process exception procedure at step 401. The
error synchronization request is then put on a dedicated
queue for error handling, e.g., at step 402. An error notifi-
cation is then sent to the service team 405, e.g., at step 403.
The synchronization request provides error details for issue
resolution. Upon resolution, the service team 405 can rerun
the synchronization request by sending the error synchroni-
zation request back to the original processing topic/queue,
e.g., at step 404.

In one implementation, as the cloud connector 130 is a
real-time system, the order of inbound messages is not
required to be strictly defined. Thus, the connector 130 may
handle an out-of-order scenario, e.g., when a child record
arrives before the parent record.

In one implementation, the connector 130 may use the
data stream application 136 to scale data processing
throughput by partition topics so that records on different
partitions can be processed in parallel, therefore achieving
scalability. As data records on a partition are processed
sequentially by its designated thread, the data stream pro-
cessing is also used to throttle inbound messages from
overrunning downstream systems.

FIG. 5A is a simplified block diagram illustrating a use
case 500 of the cloud connector framework described in
FIG. 1 for generating a trading order, according to embodi-
ments described herein. In one implementation, the client
portal 140 may host or be communicative coupled to a
trading page 501. For example, a user may submit a trading
order from a browser (displaying the trading page 501) to a
web server for an external trading system, e.g., at step 502,
and the browser may receive acknowledgement for success-
ful order submission. The cloud connector 130 may deter-
mine the service provider (e.g., which external trading
system and API the order shall be routed to) by attributes of
the submitted order, e.g., at step 504. The cloud connector
130 may call the web API by the service provider to place
the order at step 503 and may then return the order submis-
sion status to the trading page 501.

In one implementation, the trading page 501 (client portal
140) may fail to call the cloud connector 130, and as a result
the connector 130 may not look up the service provider. The
call to service provider may be deemed failed and return a
failure report to the user via the trading page 501.

FIG. 5B is a simplified block diagram illustrating an
example system flow for the use case described in FIG. 5A,
according to embodiments described herein. The client
portal (training page) 501 may comprise an angular appli-
cation 506, a web application backend 505 and a cache
service application 515. The cloud connector 130 may
include a trading API 520 and a trading adapter 525. An
external trading system 530 may include a trading API 531
and a backend system 532.

In one embodiment, at the user side, upon submitting a
trading order via the user interface, the angular application
506 may send a trading request to the web application
backend 505, which may in turn send the trading command
to the trading API 520 at the connector 130. The trading API
520 may then produce a data processing request to the data
stream application 135 for data consumption at the trading
adapter 525. The trading adapter 525 may then call the
trading API 531 at the trading system side to initiate the
execution of the trading order.

Upon calling the trading API 531, the trading adapter 525
may also send a notification to the data stream application
135 that the trading order has been sent out to the external
system. The data stream application 135 may then generate
and send a response to the trading API 520, which in turn

forward the response to a cache service 515 at the portal 501.
Thus, the web application backend 505 may query the cache
service 515 for a status update of the trading request.

In another embodiment, the backend 532 of the external
trading system 530 may synchronize with the trading API
520 at the cloud connector 130. The trading API 520 may
then update a SQL server 510 at the portal 501 with the
status of previously submitted trading orders. In this way, the
web application backend 505 may read the status update
from the SQL server 510.

FIG. 6 is a simplified block diagram illustrating a use case
600 of the cloud connector framework described in FIG. 1
for retrieving and managing external documents, according
to embodiments described herein. A user, such as user 240
in FIG. 2, may request a document based on an account and
an as-of-date, e.g., by selecting the account and the as-of-
date on a statement page 601 at the client portal 140. The
client portal 140 then submits the document request to the
cloud connector 130.

The cloud connector may in turn initiate a get document
flow at step 602, e.g., by selecting the external document
provider (e.g., based on document characteristics such as PL
and fund name) at step 603. The cloud connector 130 may
then receive the BNYM adapter to get document at step 604.
The cloud connector 130 may then request a document list
from the external document provider providing the account
and an as-of-date, at step 605. The cloud connector 130 may
filter the returned document list down to the one entry with
the correct as-of-date, e.g., at step 606. The cloud connector
130 may then request the document from the external
document provider 145 based on the filtered results, e.g., at
step 607 such that the cloud connector 130 may in turn
return a document response with the given document content
to the client portal 140. For example, the Base-64 encoded
bytes of the document is returned to the Statements Page
601.

In another embodiment, if the client portal 140 fails to call
the cloud connector 130, or the cloud connector 130 fails to
find the external document provider 245, the call to the
external document provider fails and the call to the response
callback URL fails. The statement page 601 may be returned
with a failure notification.

FIG. 7 is a simplified block diagram illustrating an
example structure 700 of the cloud connector, according to
embodiments described herein. The cloud connector 130
may comprise the parent package structure 700 comprising
an API 703, streams 704, services 705, and persistence 706,
all of which contribute to the connector framework 708. For
example, the package structure of API 703, streams 704,
services 705, and persistence 706 may be defined based on
a data type 702, which can comprise any account, position,
transaction, user, company, or other financial information
attribute.

The API 703 may be implemented by a Spring Boot
controller application. Streams 704 may comprise a Spring
Boot Kafka Streams application. Services 705 may serve as
the business logic layer. Persistence 706 may serve as the
persistence layer for the data sink of the framework 708.

FIGS. 8A and 8B is a simplified logic flow diagram
illustrating a method 800 of integrating client data and
service via the cloud connector at a multi-tenant server,
according to embodiments described herein. One or more of
the processes of method 800 may be implemented, at least
in part, in the form of executable code stored on non-
transitory, tangible, machine-readable media that when run
by one or more processors may cause the one or more
processors to perform one or more of the processes. In some

US 12,069,185 B1
7 8

5

10

15

20

25

30

35

40

45

50

55

60

65

embodiments, method 800 corresponds to the operation of
the cloud connector module 130 (e.g., FIGS. 1-2).

At step 802, a connector (e.g., 130 in FIG. 1) installed at
a server (e.g., 120 in FIG. 1) may receive data requests from
one or more client systems (e.g., 102 in FIG. 1), e.g., a first
data request from a first client system and a second data
request from a second client system. The first data request
and the second data request are routed via an application
programming interface (API) management system (e.g., 105
in FIG. 1). For example, the data request comprises any of
a synchronization request; a data processing exception
request; an out-of-order record handling request; and a data
processing throughput control request.

In one implementation, the connector includes any com-
bination of an API, a stream application, a service layer, and
a persistence layer, as shown in FIG. 7.

In one implementation, the first data request comprises a
request for a document based on a user account and a date
submitted via a user portal. In that case, the connector may
determine an external document provider based on a fund
identifier and send a document request to the external
document provider based on an account name and the date.
The connector may further filter a returned document list
down to at least one entry with a correct date and stream the
filtered returned document list in real-time.

In one implementation, the first data request comprises a
request to place a trading order to an external trading system.
In that case, the connector may determine a service provider
based on attributes of the trading order and transmit a call for
a web API by the service provider to place the order. The
connector may then return an order submission status to a
client portal.

At step 804, a queueing system of the connector may store
the first data request and the second data request. For
example, a number of data requests may be received from a
plurality of clients, and the queueing system of the connector
may store the number of data requests. The number of data
requests are thus processed via asynchronous calls.

At step 806, the connector (e.g., 130 in FIG. 1) may
retrieve authentication keys based on the first data request
and the second data request.

At step 808, the connector may transmit to an authenti-
cation system (e.g., 108 in FIG. 1) via a first web proxy, the
authentication keys for authenticating the first client system
based on a first client identifier contained in the first data
request and the second client system based on a second
client identifier contained in the second data request.

In some scenarios, the connector may determine that the
first data request or the second data request has not been
associated with a user profile stored at the server and may
process the first data request or the second data request while
creating the user profile at the server for authentication.

At step 810, the connector may determine, in response to
authentication results from the authentication system, a first
access level of data resources based on the first client
identifier and a second access level of data resource based on
the second client identifier. The first access level and the
second access level are different. For example, the first client
system or the second client system synchronizes data and/or
workflow states by access respective data resources depend-
ing on respective access level.

At step 812, the connector may then grant data access to
the first client system and the second client system based on
the first access level and the second access level, respec-
tively.

At step 814, the connector may perform data stream
processing service to generate a first data response and a
second data response based on the first access level and the
second access level.

At step 816, the data connector may transmit, via a second
web proxy (e.g., 110 b in FIG. 1), the first data response and
the second data response to a client API.

FIG. 9 is a block diagram illustrating example compo-
nents of a computing system 900 for implementing embodi-
ments described in FIGS. 1-8, according to an embodiment.
In various embodiments, the communication device may
comprise a personal computing device (e.g., smart phone, a
computing tablet, a personal computer, laptop, a wearable
computing device such as glasses or a watch, Bluetooth
device, key FOB, badge, etc.) capable of communicating
with the network. The service provider may utilize a net-
work computing device (e.g., a network server) capable of
communicating with the network. It should be appreciated
that each of the devices utilized by users and service
providers may be implemented as computer system 900 in a
manner as follows.

The computer system 900 includes a bus 912 or other
communication mechanism for communicating information
data, signals, and information between various components
of the computer system 900. The components include an
input/output (I/O) component 904 that processes a user (i.e.,
sender, recipient, service provider) action, such as selecting
keys from a keypad/keyboard, selecting one or more buttons
or links, etc., and sends a corresponding signal to the bus
912. The I/O component 904 may also include an output
component, such as a display 902 and a cursor control 908
(such as a keyboard, keypad, mouse, etc.). The display 902
may be configured to present a login page for logging into
a user account or a checkout page for purchasing an item
from a merchant. An optional audio input/output component
906 may also be included to allow a user to use voice for
inputting information by converting audio signals. The
audio I/O component 906 may allow the user to hear audio.
A transceiver or network interface 920 transmits and
receives signals between the computer system 900 and other
devices, such as another user device, a merchant server, or
a service provider server via a network 922, such as network
260 of FIG. 2. In one embodiment, the transmission is
wireless, although other transmission mediums and methods
may also be suitable. A processor 914, which can be a
micro-controller, digital signal processor (DSP), or other
processing component, processes these various signals, such
as for display on the computer system 900 or transmission
to other devices via a communication link 924. The proces-
sor 914 may also control transmission of information, such
as cookies or IP addresses, to other devices.

The components of the computer system 900 also include
a system memory component 910 (e.g., RAM), a static
storage component 916 (e.g., ROM), and/or a disk drive 918
(e.g., a solid-state drive, a hard drive). The computer system
900 performs specific operations by the processor 914 and
other components by executing one or more sequences of
instructions contained in the system memory component
910. For example, the processor 914 can perform the posi-
tion detection of webpage elements described herein accord-
ing to the process 300.

Logic may be encoded in a computer readable medium,
which may refer to any medium that participates in provid-
ing instructions to the processor 914 for execution. Such a
medium may take many forms, including but not limited to,
non-volatile media, volatile media, and transmission media.
In various implementations, non-volatile media includes

US 12,069,185 B1
9 10

5

10

15

20

25

30

35

40

45

50

55

60

65

optical or magnetic disks, volatile media includes dynamic
memory, such as the system memory component 910, and
transmission media includes coaxial cables, copper wire,
and fiber optics, including wires that comprise the bus 912.
In one embodiment, the logic is encoded in non-transitory
computer readable medium. In one example, transmission
media may take the form of acoustic or light waves, such as
those generated during radio wave, optical, and infrared data
communications.

Some common forms of computer readable media
include, for example, floppy disk, flexible disk, hard disk,
magnetic tape, any other magnetic medium, CD-ROM, any
other optical medium, punch cards, paper tape, any other
physical medium with patterns of holes, RAM, PROM,
EPROM, FLASH-EPROM, any other memory chip, or
cartridge, or any other medium from which a computer is
adapted to read.

In various embodiments of the present disclosure, execu-
tion of instruction sequences to practice the present disclo-
sure may be performed by the computer system 900. In
various other embodiments of the present disclosure, a
plurality of computer systems 900 coupled by the commu-
nication link 924 to the network (e.g., such as a LAN,
WLAN, PTSN, and/or various other wired or wireless
networks, including telecommunications, mobile, and cel-
lular phone networks) may perform instruction sequences to
practice the present disclosure in coordination with one
another.

Where applicable, various embodiments provided by the
present disclosure may be implemented using hardware,
software, or combinations of hardware and software. Also,
where applicable, the various hardware components and/or
software components set forth herein may be combined into
composite components comprising software, hardware, and/
or both without departing from the spirit of the present
disclosure. Where applicable, the various hardware compo-
nents and/or software components set forth herein may be
separated into sub-components comprising software, hard-
ware, or both without departing from the scope of the
present disclosure. In addition, where applicable, it is con-
templated that software components may be implemented as
hardware components and vice-versa.

Software in accordance with the present disclosure, such
as program code and/or data, may be stored on one or more
computer readable mediums. It is also contemplated that
software identified herein may be implemented using one or
more general purpose or specific purpose computers and/or
computer systems, networked and/or otherwise. Where
applicable, the ordering of various steps described herein
may be changed, combined into composite steps, and/or
separated into sub-steps to provide features described
herein.

The various features and steps described herein may be
implemented as systems comprising one or more memories
storing various information described herein and one or
more processors coupled to the one or more memories and
a network, wherein the one or more processors are operable
to perform steps as described herein, as non-transitory
machine-readable medium comprising a plurality of
machine-readable instructions which, when executed by one
or more processors, are adapted to cause the one or more
processors to perform a method comprising steps described
herein, and methods performed by one or more devices, such
as a hardware processor, user device, server, and other
devices described herein.

What is claimed is:
1. A method for integrating client data and service via a

single connector at a multi-tenant server, the method com-
prising:

receiving, at a connector installed at a server, a first data
request from a first client system and a second data
request from a second client system, wherein the first
data request and the second data request are routed via
an application programming interface (API) manage-
ment system;

storing, at a queueing system of the connector, the first
data request and the second data request;

retrieving, at the connector, authentication keys based on
the first data request and the second data request;

transmitting, to an authentication system via a first web
proxy, the authentication keys for authenticating the
first client system based on a first client identifier
contained in the first data request and the second client
system based on a second client identifier contained in
the second data request;

determining, in response to authentication results from the
authentication system, a first access level of data
resources based on the first client identifier and a
second access level of data resource based on the
second client identifier,
wherein the first access level and the second access

level are different;
granting data access to the first client system and the

second client system based on the first access level and
the second access level, respectively;

performing a data stream processing service to generate a
first data response and a second data response based on
the first access level and the second access level; and

transmitting, via a second web proxy, the first data
response and the second data response to a client API.

2. The method of claim 1, wherein the first client system
or the second client system synchronizes data and/or work-
flow states by accessing respective data resources depending
on a respective access level.

3. The method of claim 1, further comprising:
receiving a plurality of data requests from a plurality of

clients;
storing, at the queueing system of the connector, the

plurality of data requests; and
processing the plurality of data requests via asynchronous

calls.
4. The method of claim 1, wherein the data request

comprises any of:
a synchronization request;
a data processing exception request;
an out-of-order record handling request; and
a data processing throughput control request.
5. The method of claim 1, wherein the connector includes

any combination of an API, a stream application, a service
layer and a persistence layer.

6. The method of claim 1, wherein the first data request
comprises a request for a document based on a user account
and a date submitted via a user portal, and the method further
comprising:

determining an external document provider based on a
fund identifier;

sending a document request to the external document
provider based on an account name and the date;

filtering a returned document list down to at least one
entry with a correct date; and

streaming the filtered returned document list in real-time.
7. The method of claim 1, wherein the first data request

comprises a request to place a trading order to an external
trading system, and the method further comprising:

determining a service provider based on attributes of the
trading order;

US 12,069,185 B1
11 12

5

10

15

20

25

30

35

40

45

50

55

60

65

transmitting a call for a web API by the service provider
to place the order; and

returning an order submission status to a client portal.
8. The method of claim 1, further comprising:
determining that the first data request or the second data

request has not been associated with a user profile
stored at the server; and

processing the first data request or the second data request
while creating the user profile at the server.

9. A system for integrating client data and service via a
single connector at a multi-tenant server, the system com-
prising:

a communication interface receiving, at a connector
installed at a server, a first data request from a first
client system and a second data request from a second
client system, wherein the first data request and the
second data request are routed via an application pro-
gramming interface (API) management system;

a memory comprising a queueing system at the connector
which stores the first data request and the second data
request, wherein the memory further stores a plurality
of processor-executable instructions; and

one or more hardware processors reading and executing
the plurality of processor-executable instructions to
perform operations comprising:
retrieving, at the connector, authentication keys based

on the first data request and the second data request;
transmitting, to an authentication system via a first web

proxy, the authentication keys for authenticating the
first client system based on a first client identifier
contained in the first data request and the second
client system based on a second client identifier
contained in the second data request;

determining, in response to authentication results from
the authentication system, a first access level of data
resources based on the first client identifier and a
second access level of data resource based on the
second client identifier,

wherein the first access level and the second access
level are different;

granting data access to the first client system and the
second client system based on the first access level
and the second access level, respectively;

performing a data stream processing service;
generating, based on the performing, a first data

response and a second data response based on the
first access level and the second access level; and

transmitting, via a second web proxy, the first data
response and the second data response to a client
API.

10. The system of claim 9, wherein the first client system
or the second client system synchronizes data and/or work-
flow states by access respective data resources depending on
respective access level.

11. The system of claim 9, wherein the operations further
comprise:

receiving a plurality of data requests from a plurality of
clients;

storing, at the queueing system of the connector, the
plurality of data requests; and

processing the plurality of data requests via asynchronous
calls.

12. The system of claim 9, wherein the data request
comprises any of:

a synchronization request;
a data processing exception request;

an out-of-order record handling request; and
a data processing throughput control request.
13. The system of claim 9, wherein the connector includes

any combination of an API, a stream application, a service
layer and a persistence layer.

14. The system of claim 9, wherein the first data request
comprises a request for a document based on a user account
and a date submitted via a user portal, and the operations
further comprising:

determining an external document provider based on a
fund identifier;

sending a document request to the external document
provider based on an account name and the date;

filtering a returned document list down to at least one
entry with a correct date; and

streaming the filtered returned document list in real-time.
15. The system of claim 9, wherein the first data request

comprises a request to place a trading order to an external
trading system, and the operations further comprising:

determining a service provider based on attributes of the
trading order;

transmitting a call for a web API by the service provider
to place the order; and

returning an order submission status to a client portal.
16. The system of claim 9, wherein the operations further

comprise:
determining that the first data request or the second data

request has not been associated with a user profile
stored at the server; and

processing the first data request or the second data request
while creating the user profile at the server.

17. A non-transitory processor-readable storage medium
storing a plurality of processor-executable instructions for
integrating client data and service via a single connector at
a multi-tenant server, the instructions being executed by one
or more hardware processors to perform operations com-
prising:

receiving, at a connector installed at a server, a first data
request from a first client system and a second data
request from a second client system, wherein the first
data request and the second data request are routed via
an application programming interface (API) manage-
ment system;

storing, at a queueing system of the connector, the first
data request and the second data request;

retrieving, at the connector, authentication keys based on
the first data request and the second data request;

transmitting, to an authentication system via a first web
proxy, the authentication keys for authenticating the
first client system based on a first client identifier
contained in the first data request and the second client
system based on a second client identifier contained in
the second data request;

determining, in response to authentication results from the
authentication system, a first access level of data
resources based on the first client identifier and a
second access level of data resource based on the
second client identifier,
wherein the first access level and the second access

level are different;
granting data access to the first client system and the

second client system based on the first access level and
the second access level, respectively;

generating a first data response and a second data
response based on the first access level and the second
access level based on performing a data stream pro-
cessing service; and

US 12,069,185 B1
13 14

5

10

15

20

25

30

35

40

45

50

55

60

65

transmitting, via a second web proxy, the first data
response and the second data response to a client API.

18. The non-transitory processor-readable storage
medium of claim 17, wherein the first client system or the
second client system synchronizes data and/or workflow
states by access respective data resources depending on
respective access level.

19. The non-transitory processor-readable storage
medium of claim 17, wherein the operations further com-
prise:

receiving a number of data requests from a plurality of
clients;

storing, at the queueing system of the connector, the
number of data requests; and

processing the number of data requests via asynchronous
calls.

20. The non-transitory processor-readable storage
medium of claim 17, wherein the first data request comprises
a request for a document based on a user account and a date
submitted via a user portal, and the operations further
comprising:

determining an external document provider based on a
fund identifier;

sending a document request to the external document
provider based on an account name and the date;

filtering a returned document list down to at least one
entry with a correct date; and

streaming the filtered returned document list in real-time.

∗ ∗ ∗ ∗ ∗

US 12,069,185 B1
15 16

5

10

15

20

25

