a2 United States Patent

Sutton et al.

US011726818B1

US 11,726,818 B1
Aug. 15, 2023

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@n

(22)
(6D

(52)

SYSTEM FOR EXECUTING TASKS IN
DIFFERENT PROGRAMMING LANGUAGES

Applicant

Inventors:

Assignee:

Notice:

: Black Rock, Inc., San Francisco, CA
(US)

Nick Sutton, London (GB); Jeno
Kovacs, Gyomro (HU); Sylvain Olivier
Eric Cheroutre, London (GB);
Philippe Benjamin de Koning, London
(GB)

BlackRock, Inc., San Francisco, CA
(US)

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 339 days.

Appl. No.: 17/076,322
Filed: Oct. 21, 2020
Int. CIL
GOG6F 9/46 (2006.01)
GOGF 9/48 (2006.01)
GOG6F 9/445 (2018.01)
GOG6F 9/30 (2018.01)
GOG6F 9/50 (2006.01)
GOG6F 9/455 (2018.01)
U.S. CL
CPC GOG6F 9/4881 (2013.01); GOG6F 9/30043
(2013.01); GO6F 9/44505 (2013.01); GO6F
9/4552 (2013.01); GO6F 9/5016 (2013.01)
Client Device
102
Analytics
Engine -
Interface
106

Memory 108

(58) Field of Classification Search
CPC GOOGF 9/4881; GO6F 9/30043; GO6F
9/44505; GO6F 9/4552; GOG6F 9/5016
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2015/0294426 Al* 10/2015 Nezhad G06Q 50/01
705/319
2019/0370288 Al* 12/2019 Bequet GO6F 16/9014

* cited by examiner

Primary Examiner — Tammy E Lee
(74) Attorney, Agent, or Firm — Haynes and Boone, LLP

(57) ABSTRACT

Systems, methods, and computer program products for
executing a sequence of tasks are provided. An analytics
engine receives a request to execute a group of tasks, where
tasks execute in different programming languages. A
sequence for executing the tasks in the group of tasks is
determined using the input and output parameters of the
tasks. The tasks are executed according to a determined
sequence. To execute each task, the analytics engine instan-
tiates a process that corresponds to programming language
associated with the tasks. The process executes the task.
Once all tasks complete execution, an output of the last task
is a result of the group of tasks.

20 Claims, 8 Drawing Sheets

Analytics Engine
104

Task Repository
110

Data Repository
112

US 11,726,818 B1

Sheet 1 of 8

Aug. 15, 2023

U.S. Patent

=

v0T
ouiduy sonAreuy

['DId

11
Kioysoday ere(q

01T
K1oy1soday] yse],

30T AI0WAN

90T
90BJIU]
ouiduyg
sonAJeuy

[4us
9OTAJ(T JURID

US 11,726,818 B1

Sheet 2 of 8

Aug. 15, 2023

U.S. Patent

¢ D4
» D90¢C
» d90¢C
41
Kiopsodoy] v1eq » V90T
(88
Kioysodoy yse].
0 SS201d qv0¢ ss201g # V10T SS9001J
70T
ouiguyg Jurouanbag
¥0T
ourduy sonAjeuy

US 11,726,818 B1

Sheet 3 of 8

Aug. 15, 2023

U.S. Patent

¢ 'DI4
F \ 4 A A
HF0C SP0C aroc . qr0C
$S9001J #)) 890014 T10OS ok g $S9001 [90XH
0¢
$S9001J
A
H?0¢ Sc0¢ dc0¢ H70¢
il _ H90¢ S90¢ d90¢ H90¢C
c0¢C
Kioysoday > _
e ourduy Surouanbag 011
a K1oy1s0day yse,
A
POYIBIA UORNJAXT e
98en3ue7 uonejuswsa|dw .
uJsjaweled Inding e
zJojpweled nding e 901
T Jo19weied Inding e 0By IOU]
u Jaraweled ndu| . oﬁﬂwﬁm moﬁ%ﬁwﬁaﬂ
zJo1oweleq indu; e
1 Jo1oweled indu; e
c0¢
uoNIuLA(YSeL

S
S
on

US 11,726,818 B1

Sheet 4 of 8

Aug. 15, 2023

U.S. Patent

¥ 'DId
| | I |
I | 1 |
| | t }NsaJ u4n1ay
“ | — S
I [VL0
: “ unJ ayepdn
_
ndino v_wmu 21015 8 |
| I
Y !
' I
| « 1ndino ysej uiniay IV |
I vy |
| PG I [p— |
I wy I
| 9dAy ss920.4d 109[9S] |
| | |
Coow _
IIIIIIIIII mumv:‘_BmmlllllllllIV |
w:\ \\mhwumEmhmn indui :
) o4 ejep 3sanbay uonuiyep
| \ | =+ SEIUINIBY ——
' 4l : 148% \co_u_ccw_o
“ " yse1 1sanbay
: | ay
| | = — — — Qgluniwniay ¢ = -
S
“ " 0l @l una i3sanbay
_ | — | uoinJaxa
_ . Lo _“vi 80v : o
| | I |
I I | | 90¥ -
I [1 |
| | I |
| | I |
| | | uonjuep
_ | | sse} 2403
| | 1
_ | | poy —
| | I |
T S0C 0¢ 0Tt
Aloysoday 59901 aui8u3 AJonsoday
eleq d 3uipuanbag ysel

S
=

|
|
1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
uonuyap
yse3 93esauan
wor
|
c0¢
uonuyeQ
Jsel

90T
CREIBET]

auidu3
JazAjeuy

U.S. Patent Aug. 15,2023 Sheet 5 of 8 US 11,726,818 B1

500

Receive, at an analytics engine, a request to execute a group of

models, where the models execute in different programming | 502
languages and perform different operations (
Determine an order in which the sequence of models executes 04
-5

from a first model to a last model using the input parameters and
output parameters of each model (

.

Execute the models sequentially from the first model to the last
. - 506
model such that an output of a current model in the sequence of -
models is an input to a subsequent model in the sequence of
models

:

Determine a result from the sequence of models as an output of
) - 508
the last model in the sequence of models

FIG. 5

U.S. Patent Aug. 15,2023 Sheet 6 of 8 US 11,726,818 B1

00

Retrieve a pre-configured definition of a model from a model 602
database
Retrieve, using the definition of the model, data associated with | ¢4
the model from the data database -
Generate a process that executes the model, wherein the process
- 606

is based on an implementation language included in the)
definition of the model (

:

Operate, using the process and at least one method in the
definition, on the data associated with the model to determine the |~ 608
output of the model

v

Store the output of the model in the data database where the - 610
output is an input to a subsequent model)

FIG. 6

U.S. Patent Aug. 15,2023 Sheet 7 of 8 US 11,726,818 B1

~J
=l
(e

Configure input parameters for a model (702
Configure output parameters for the model (704
- 706

Configure an implementation language for executing the model (

¢

Configure one or more methods for executing the model | 708

FIG. 7

Y

,/\\ - TN
o YIomMON
J

A

—_ o

8 'DI4

US 11,726,818 B1

CI8
90BJINU] JI0MION

(o

78 uoneururdoq

uonedo|

08 10Ssa001]

Sheet 8 of 8

78 [01u0)) 108In))

Aug. 15, 2023

T8 2AL(Q I

93e101§

S

908 AIOWN

$18 Aedsigq

U.S. Patent

S
S
0|

US 11,726,818 Bl

1

SYSTEM FOR EXECUTING TASKS IN
DIFFERENT PROGRAMMING LANGUAGES

TECHNICAL FIELD

The disclosure generally relates to executing tasks in
computing environments, and more specifically to executing
a sequence of independent tasks written in different pro-
gramming languages.

BACKGROUND

Conventional computing systems or applications invoke
tasks that are written in the same programming language.
When the tasks are written in the same programming lan-
guage and are associated with the same application, the
dependencies between tasks are known. Further, when tasks
are compiled into executable objects, the compiler deter-
mines the sequence for executing these tasks. However,
when different applications invoke tasks that are written in
different programming languages, the dependencies among
tasks and the sequence for executing these tasks are not
known. This results in an inefficient and time-consuming
process, where a user initially installs programs that may
execute the programming language the corresponds to dif-
ferent tasks, manually verifying an existence of data that is
manipulated by each task, and then determining whether the
task had generated an output prior to executing the next task.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1is an exemplary system where embodiments can be
implemented.

FIGS. 2 and 3 are block diagrams of an analytics engine,
according to an embodiment.

FIG. 4 is a flow diagram for creating and executing a task,
according to an embodiment.

FIG. § is a flowchart of a method for processing a
sequence of tasks that include models, according to an
embodiment.

FIG. 6 is a flowchart of a method for executing a task that
includes a model in the group of tasks, according to an
embodiment.

FIG. 7 is a flowchart of a method for defining a task
definition that is a model definition, according to an embodi-
ment.

FIG. 8 is a block diagram of a computer system suitable
for implementing one or more components or operations in
FIGS. 1-7 according to an embodiment.

Embodiments of the disclosure and their advantages are
best understood by referring to the detailed description that
follows. It should be appreciated that like reference numer-
als are used to identify like elements illustrated in one or
more of the figures, wherein showings therein are for
purposes of illustrating embodiments of the disclosure and
not for purposes of limiting the same.

DETAILED DESCRIPTION

The detailed description set forth below, in connection
with the appended drawings, is intended as a description of
various configurations and is not intended to represent the
only configurations in which the concepts described herein
may be practiced. The detailed description includes specific
details for the purpose of providing a thorough understand-
ing of the various concepts. However, it will be apparent to
those skilled in the art that these concepts may be practiced

20

25

30

35

40

45

50

55

60

65

2

without these specific details. In some instances, well-
known structures and components are shown in block dia-
gram form in order to avoid obscuring such concepts.

The embodiments are directed to an analytical system for
sequentially executing unrelated tasks written in different
programing or implementation languages. Specifically, a
task may include one or more methods that are written in an
implementation language specific to the task. For example,
a first task may be written in a first implementation language
and a second task may be written in a second implementa-
tion language that is different from the first implementation
language. The methods in the task may manipulate data that
the task receives and generate output data. The task is
independent of other tasks and does not know that other
tasks may exist in the analytical system. The data, however,
may flow from task to task and be manipulated by different
tasks.

In some embodiment, a group of tasks may be executed
sequentially. When tasks are executed sequentially, data that
is an output of the first task may be an input to the second
task. Further, data that is an output of the second task may
be in an input to a third task. The sequence continues until
the last task in the group of tasks generates an output. The
output of the last task may be a result associated with the
group of tasks.

Because each task in the group of tasks in independent
from other tasks, an analytics engine may determine the
sequence in which the tasks in the group may be executed.
To determine the sequence, the analytics engine determines
the input and output parameters of each task. The first task
in the sequence is the task that includes input parameters that
do not match the output parameters of other tasks in the
group of tasks. The match may be between all or a desig-
nated subset of output parameters of the first task and the
input parameters of other tasks. The second task in the
sequence is a task that includes the input parameters that
match the output parameters of the first task. If, for example,
two tasks include the input parameters that match the output
parameters of the first task, then these two tasks may be
executed as a second task and a third task in the sequence.
The analytics engine continues this process until either all
tasks in the group of tasks have been executed, or until the
analytics engine identifies the last task in the sequence. The
last task is the task includes the output parameters that do not
match the input parameters of other tasks in group.

Because each task may be written in a different imple-
mentation language, the analytics engine may instantiate a
process to execute the task based on the implementation
language. For example, for a task that is implemented in
Python, the analytics engine may instantiate a Python pro-
cess to execute the methods in the task. For a task that is
written in C#, the analytics engine may instantiate a C#
process to execute the methods in the task. Once instanti-
ated, the process may receive data, manipulate the data as
specified in the methods, and generate an output. The output
may serve as an input to the next task in the sequence.

Notably the above process for executing tasks is auto-
matic. This is because the analytics engine determines the
sequence of tasks, and instantiates a process to execute each
task until an output is generated for the group of tasks. The
analytics engine may also determine which processes may
be executed sequentially or in parallel.

Further description of the embodiments is discussed
below.

FIG. 1 is an exemplary system 100 where embodiments
can be implemented. System 100 includes one or more client
or computing devices 102 and an analytics engine 104.

US 11,726,818 Bl

3

Computing devices 102 may be portable or non-portable
electronic devices under the control of a user and configured
to transmit, receive, and manipulate data from analytics
engine 104. Example computing devices 102 include desk-
top computers, laptop computers, tablets, smartphones,
wearable computing devices, eyeglasses that incorporate
computing devices, implantable computing devices, etc.

Computing device 102 may include an analytics engine
interface 106. Analytics engine interface 106 may be pre-
installed on computing device 102, installed on computing
device 102 using portable memory storage devices, such as
compact disks or thumb-drives, or be downloaded to the
computing devices 102 from one of external servers. Ana-
Iytics engine interface 106 may execute on computing
device 102 and receive instructions and data from a user or
from analytics engine 104. Although not shown, analytics
engine 104 and analytics engine interface 106 may be
included on the same computing device, such as computing
device 102.

In some embodiments, analytics engine interface 106 may
receive user input. An example user input may include data,
configuration(s) associated with data, instructions for
manipulating data, instructions for grouping tasks into a
group, etc. Similarly, analytics engine interface 106 may
display an output. An example output may include manipu-
lated data, configuration(s), instructions, etc. Analytics
engine interface 106 may also receive instructions for inclu-
sion in different methods that are included in the tasks or
instructions for configuring a task definition that is further
described below.

System 100 may also include analytics engine 104. Ana-
Iytics engine 104 may be communicatively coupled to
analytics engine interface 106 and one or more memories
108. For discussion purposes only, FIG. 1 illustrates a single
memory 108. Analytics engine 104 may be configured to
execute multiple tasks. These tasks may be computer pro-
grams that are written in different programming or imple-
mentation languages, such as C, C++, Go, Java, JavaScript,
Python, Excel, Scala, etc. Because the tasks are written in
different programming languages, each task may be
executed using a different process that is specific to a
programming language associated with the task. The tasks
are also loosely coupled to each other. In other words, the
execution of each task is independent of other tasks and each
task does not know about the existence of other tasks. The
loose coupling may occur when the data that is an output of
one task may be an input to the second task. In some
embodiments, analytics engine 104 may sequentially link
the execution of several tasks. For example, analytics engine
104 may identify the input(s) and output(s) parameters of
each task and using the input(s) and output(s) parameters
determine the sequence of a group of tasks. In this way, the
data may flow from one task to another task and may be
manipulated by multiple tasks.

In some embodiments, the function of each task may be
defined by the methods that are written in the implementa-
tion language associated with the task. In this case, tasks
may be different computer programs that each operate on
data, where each task is written in a different implementation
language.

Tasks, when executed as a group, may have different uses.
In one example, a group of tasks may include tasks for
configuring a portion or different components of a network,
where each task performs a particular configuration func-
tion. When these tasks are executed as a group, the tasks may
configure an entire network. In another example, a group of
tasks may include tasks for integrating different views on a

20

25

30

35

40

45

50

55

60

65

4

balance sheet by different entities within a company, such as
a managerial entity, a risk entity, and a finance entity, where
each task corresponds to each entity. In this case, when the
task that corresponds to a managerial entity executes that
task and generates an output, the task that corresponds to a
risk entity may receive the output of the managerial task and
then further manipulate the data and generate an output that
may be an input to a task that corresponds to a finance entity.
The finance entity may further manipulate the data and
generate a result for the data the corresponds to the mana-
gerial, risk, and finance entities. In another example, each
task may include an implementation code for a model. An
implementation code for a model may model data or analyze
data using predefined mathematical relationships or algo-
rithms. In this case, a group of tasks may include multiple
models, with each model sequentially modeling the data that
has been manipulated by previous models.

In some embodiment, analytics engine interface 106 may
configure tasks into a group. For example, all tasks in the
same group may be configured to include an identifier.
Analytics engine 104 may recognize the tasks in a group
using the group identifier. The tasks in a group may be
sequentially executed by the analytics engine as discussed
below.

Analytics engine interface 106 may receive instructions to
execute a group of tasks. Once received, analytics engine
interface 106 may transmit a request to execute a task or a
group of tasks to analytics engine 104. The request may
include a group identifier. Analytics engine 104 may receive
the request, and identify the tasks in the group using the
group identifier. Analytics engine 104 may then determine
the sequence of tasks in the group, execute the tasks accord-
ing to the sequence, generate an output, and transmit the
output back to analytics engine interface 106. Analytics
engine interface 106 may receive and display the output
using Hypertext Markup Language (HTML), cascading
style sheets (CSS), scripting language, such as JavaScript, or
the like.

In some embodiments, system 100 may include memory
108. Memory 108 may be a memory that is conducive for
large scale storage, such as a database, a file system, a large
non-volatile memory or may be one of the memories
descried in FIG. 8. Also, memory 108 may include more
than one memory where each memory is equipped for
long-term storage or short-term storage of data. Memory
108 may also be communicatively coupled to analytics
engine 104 and analytics engine interface 106.

In some embodiments, memory 108 may include a task
repository 110 and a data repository 112. Task repository 110
may include definitions for tasks and methods that are
associated with each task. An example task definition may
include input parameter(s), output parameter(s), implemen-
tation language in which the source code for the model or
task is written, and the methods or names of methods that
may be implemented in the implementation language and
include scripts, classes, functions, etc. In some embodi-
ments, a task definition may be configured using analytics
engine interface 106. Once configured, analytics engine
interface 106 may transmit the task definition for storage to
task repository 110.

Data repository 112 may include data on which tasks
operate. The data may be uploaded to or retrieved from data
repository 112 using analytics engine interface 106. Analyt-
ics engine 104 may also retrieve the data from data reposi-
tory 112, manipulate the data using one or more tasks, and
then store the manipulated data back into data repository
112.

US 11,726,818 B1

5

In an embodiment, analytics engine interface 106 may
utilize numerous components included in computing device
102 to receive input, store and display data, and communi-
cate with analytics engine 104. Analytics engine 104 may
also execute on a computing device or another computer or
server and utilize numerous computer components. Example
components are discussed in detail in FIG. 8.

FIG. 2 is a block diagram 200 of an analytics engine,
according to an embodiment. As illustrated in FIG. 2,
analytics engine 104 includes a sequencing engine 202.
Sequencing engine 202 may instantiate different processes
204A-C that may execute tasks 206A-C. For example, for
task 206A that is written in an Excel code, sequencing
engine 202 may instantiate process 204A that may execute
an Excel code. Similarly, for task 206B that is written in a
C# code, sequencing engine 202 may instantiate process
204B that may execute the C# code. In another example, for
task 206C that is written in a Python code, sequencing
engine 202 may instantiate process 204C that may execute
the Python code. Notably, sequencing engine 202 is not
limited to the above discussed source code languages and
may instantiate processes 204 that execute other types of
source code. Once sequencing engine 202 instantiates pro-
cesses 204A-C, each one of processes 204A-C may execute
within analytics engine 104 independently of other pro-
cesses in processes 204A-C. Processes 204A-C may also
execute independently of sequencing engine 202. In particu-
lar, processes 204A-C may perform the methods included in
the task definition of a corresponding task. Further processes
204A-C may execute either sequentially or in parallel.

To execute tasks 206A-C, sequencing engine 202 may
retrieve tasks 206A-C from task repository 110. Alterna-
tively, sequencing engine 202 may retrieve task definitions
from task repository 110, while processes 204A-C may
retrieve the methods associated with task definitions from
task repository 110.

Sequencing engine 202 may determine tasks 206 or a
group of tasks that may be executed. For example, suppose
analytics engine 104 receives a request to execute a group of
tasks that includes tasks 206A-C. The request may identify
tasks 206A-C or may include an identifier that may be
associated with a group that includes tasks 206A-C. When
the request includes an identifier, sequencing engine 202
may map the identifier in the request to a group of tasks
206A-C. The mapping between the identifier and the group
may be stored in task repository 110, sequencing engine 202
or elsewhere in analytics engine 104.

Once sequencing engine 202 determines tasks 206A-C
that may be executed, sequencing engine 202 may determine
the sequence in which tasks 206A-C execute. To determine
the sequence, sequencing engine 202 may retrieve task
definitions for tasks 206A-C from task repository 110 or a
memory internal to sequencing engine 202, and use the task
definitions to identify the input and output parameters of
each task in tasks 206A-C. Once the input and output
parameters are identified, sequencing engine 202 may iden-
tify a task in tasks 206A-C that has input parameters that do
not match the output parameters of other tasks and identify
this task as a first task. For illustration purposes, suppose
sequencing engine 202 identifies task 206A as the first task.
Once task 206A is identified, sequencing engine 202 may
identify from the task definition associated with task 206A
the implementation language in which the methods in task
206A are written. For illustration purposes, the implemen-
tation language for task 206A may be Excel. Next, sequenc-
ing engine 202 may generate an instance of a process that
corresponds to the implementation language and processes

20

25

30

35

40

45

50

55

60

65

6

the methods associated with task 206A. For illustrative
purposes, this process may be process 204A that executes
Excel code. Process 204A may retrieve methods associated
with task 206A using the task definition and execute the
methods. In some embodiments, process 204A may retrieve
data that corresponds to the input parameters from data
repository 112, manipulate the data using the methods, and
store the manipulated data back into data repository 112.

After sequencing engine 202 completes executing task
206A, sequencing engine 202 may select a next task from
tasks 206B-C to execute. To select the next task, sequencing
engine 202 may compare the output parameters of task 206A
as defined in the task definition for task 206A to the input
parameters of other tasks, such as tasks 206B-C. Suppose,
for illustrative purposes, that the output parameters of task
206A match the input parameters of task 206B as defined in
the task definition for task 206B. In this case, sequencing
engine 202 begins to execute task 206B by instantiating a
process, such as process 204B, that executes the implemen-
tation language in which the methods in task 206B are
written. For illustrative purposes the methods may be writ-
ten in C#. Once instantiated, process 204B may execute the
methods in C# independent from other processes or from
sequencing engine 202. As discussed above, process 204
may retrieve data from the data repository 112 that is
requested by the methods in task 206B. The data may
include data that corresponds to the input parameters of task
206B. Further, the data that is an input data to task 206B may
be an output of task 206A.

After sequencing engine 202 completes executing task
206B, sequencing engine 202 may select a next task to
execute. Because task 206C is the last task in the group,
sequencing engine 202 may select task 206C. Alternatively,
sequencing engine 202 may use the task definition of task
206C to determine whether the input parameters of task
206C match the output parameters of task 206B. In another
embodiment, sequencing engine 202 may identify task 206C
as the last task because the output parameters of task 206C
do not match the input parameters of other tasks in the
group, such as tasks 206A-B. Once task 206C is selected,
sequencing engine 202 may execute task 206C by instanti-
ating a process, such as process 204C that executes the
implementation language associated with task 206C. For
illustrative purposes, process 204C may be a Python process
because the implementation language for task 206C is
Python. Once task 206C completes, sequencing engine 202
may determine that all tasks 206A-C in the group have been
executed and generate an output. Sequencing engine 202
may transmit the output for display using analytics engine
interface 106 shown in FIG. 1. The output may be the data
associated with the output parameters of task 206C.

Sequencing engine 202 may use various techniques to
determine the order for executing tasks. In some embodi-
ments, sequencing engine 202 may determine the order of a
sequence between tasks by identifying a match between all
input parameters of one task with all output parameters of
another task. For example, sequencing engine 202 may
compare all output parameters of task 206A to all input
parameters of tasks 206B and 206C to determine that task
206B follows task 206A. In other embodiments, sequencing
engine 202 may compare a subset of output parameters in
one task to a subset of input parameters of other tasks. These
input and output parameters may be designated as required
parameters in the task definition for determining a sequence
among tasks 206A-C. In yet other embodiments, the input
and output parameters may be defined as tabular data
parameters. Parameters defined as tabular data parameters

US 11,726,818 B1

7

may be mapped to one or more tables or columns or fields
in the tables in a database. To determine a match between the
input parameter and output parameter defined as tabular data
parameters, sequencing engine 202 may determine a match
when an input parameter is mapped to a table, or columns or
a field within the table and the output parameter is mapped
to the same table, or column or the same field within the
table.

In some embodiments, sequencing engine 202 may iden-
tify multiple tasks that have an output that matches the input
of another task. In this case, sequencing engine 202 may
execute the multiple tasks sequentially or in parallel. For
example, suppose a task group includes tasks 206A-C.
Further, suppose sequencing engine 202 determines that the
output parameters of tasks 206A and 206B match the input
parameters of task 206C. In this case, sequencing engine 202
may select one of tasks 206A or 206B to execute and
instantiate a process that corresponds to the selected task,
such as process 204A for task 206A. Once process 204A
completes execution, sequencing engine 202 may execute
the other task, such as task 206B using process 204B.
Alternatively, sequencing engine 202 may execute tasks
206A and 206B in parallel by instantiating processes 204A
and 204B. Once both tasks 206A and 206B complete,
sequencing engine 202 may then execute task 206C using
process 204C.

Once tasks 206A-C complete execution, sequencing
engine 202 may terminate processes 204A-C. In one
embodiment, sequencing engine 202 may terminate pro-
cesses 204A-C after sequencing engine 202 completes
execution of all tasks 206A-C in a task group. In another
embodiment, after sequencing engine 202 completes execu-
tion of each one of tasks 206A-C, sequencing engine 202
may terminate the corresponding process. For example,
sequencing engine 202 may terminate process 204A after
process 204A completes executing task 206A, may termi-
nate process 204B after process 204B completes executing
task 206B, and so on.

FIG. 3 is a block diagram 300 of a system that includes
an analytics engine, according to an embodiment. As illus-
trated in FIG. 3, analytics engine interface 106 may generate
task definition 302. Task definition 302 may define one or
more input parameters and one or more output parameters
for task 206. The input parameters may define the type of
data and/or data name that task 206 receives as input. The
input parameters, such as tabular data parameters, may also
be linked to a table, column, or a field in the table in a
database that stores the data in data repository 112. The
output parameters may define the type of data or data name
that task 206 generates as output. The output parameters,
such as tabular data parameters, may also be linked to a table
or a column name in a database that stored the output data
in data repository 112. In some embodiments, task definition
302 may also define an implementation language that is used
to execute task 206 or one or more methods of task 206.
Once defined, task definition 302 may be stored in task
repository 110, within sequencing engine 202 or another
repository accessible to sequencing engine 202.

As discussed above, sequencing engine 202 may also use
task definition 302 to determine when to execute task 206 in
the sequence of tasks. For illustrative purposes, suppose task
repository 110 may store tasks 206, such as tasks 206E,
206P, 206S, and 206H, where task 206E has methods that
are implemented in Excel, task 206P has methods that are
implemented in Python, task 206S has methods that are
implemented in SQL, and task 206H has methods that are
implemented in C#. Each of tasks 206E, 206P, 206S, and

20

25

30

35

40

45

50

55

60

65

8

206H may include a corresponding task definition 302E,
302P, 302S, and 302H. Once sequencing engine 202
receives a request to execute one of tasks 206E, 206P, 206S,
and 206H, sequencing engine 202 may initiate an instance of
process 204. The type of process 204 may depend on the
implementation language included in the corresponding task
definition 302. For example, task definition 302E indicates
that the implementation language is Excel, sequencing
engine 202 may initiate an instance of Excel process 204E
that executes methods of task 206E written in Excel; if task
definition 302P indicates that the implementation language
is Python, sequencing engine 202 may initiate an instance of
Python process 204P that executes methods of task 206P
written in Python; if task definition 302S indicates that the
implementation language is SQL, sequencing engine 202
may initiate an instance of SQL process 20S4 that executes
methods in task 206S written in SQL; if task definition 302H
indicates that the implementation language is C#, sequenc-
ing engine 202 may initiate an instance of SQL process 204S
that executes methods of task 206H written in C#.

As process 204 executes, process 204 calls methods
included in task definition 302 that correspond to task 206.
For example, process 204E may invoke methods in task
definition 302E, process 204P may invoke methods in task
definition 302P, process 204S may invoke methods in task
definition 302S, and process 204H may invoke methods in
task definition 302H. The methods may retrieve data from
data repository 112 and manipulate the data. The data in the
data repository may have been stored to data repository 112
using analytics engine interface 106 or task 206 that has
previously been executed by sequencing engine 202. When
process 204 completes executing task 206, sequencing
engine 202 may store data in data repository 112.

FIG. 4 is a flow diagram 400 for creating and executing
a task, according to an embodiment. As illustrated in flow
diagram 400, operations 402-404 describe defining task 206
and operations 406-430 describe executing task 206.

At operation 402, a task definition is created. For
example, analytics engine interface 106 may receive instruc-
tions that configure task definition 302. As discussed above,
task definition 302 may include input parameter(s), output
parameter(s), implementation language, and execution
methods.

At operation 404, task definition 302 may be stored in a
memory storage, such as task repository 110 for subsequent
access and retrieval by sequencing engine 202. In some
embodiments, analytics engine interface 106 may store task
definition 302 in task repository. In other embodiments, task
definition 302 may be transmitted to task repository 110
through analytics engine 104. Along with task definition
302, different methods that are included in task definition
302 may also be stored in task repository 110.

In some embodiments, multiple tasks definitions 302 may
be created using operations 402-404 discussed above. Nota-
bly, tasks 206 that are associated with task definitions 302
are typically unrelated to each other and can execute inde-
pendently of each other. Each task 206 may include the
implementation of the methods indicated in task definition
302.

At operation 406, an execution of one or more tasks
begins. For example, analytics engine interface 106 may
receive instructions to select an execution of task 206A or a
group of tasks, such as tasks 206A-C. Once analytics engine
interface 106 receives instructions, analytics engine inter-
face 106 may generate a message that includes an identifier

US 11,726,818 B1

9

of task 206A or a group of tasks 206A-C. Analytics engine
interface 106 may transmit the message to sequencing
engine 202.

In operation 407, the sequencing engine 202 may deter-
mine task 206 or group of tasks 206 that may execute from
an identifier in the message. In case of a single task 206 that
is being executed, sequencing engine 202 may proceed to
operation 408. Otherwise, sequencing engine 202 may use
an identifier in the message to determine tasks 206A-C in the
group of tasks 206A-C. Sequencing engine 202 may also
determine that task 206A is the first task because the
parameters of task 206A do not match the output parameters
of other tasks 206 in the group (tasks 206B-C), and select to
execute task 206A.

At operation 408, a run identifier is requested. For
example, sequencing engine 202 may request a run identifier
from task repository 110. A run identifier may indicate an
order of executions to sequencing engine 202 once sequenc-
ing engine 202 completes executing task 206A or a group of
tasks 206A-C or to access output data that is associated with
each task 206. Task repository 110 may assign run identifiers
sequentially, and task 206 that sequencing engine 202
executes first may be associated with a run identifier=1. The
next task 206, such as task 206B, that executes may be
assigned a run identifier=2. In some instances, task reposi-
tory 110 may generate run identifier sequentially, and return
the next run identifier in sequence to sequencing engine 202.

At operation 410, a run identifier is returned. For example,
task repository 110 may return a run identifier to sequencing
engine 202. Sequencing engine 202 may associate the run
identifier with task 206A that sequencing engine 202 has
selected to execute. In this way, once sequencing engine 202
completes executing tasks 206A-C, sequencing engine 202
may access output of the tasks 206A-C using the corre-
sponding run identifier.

At operation 412, a task definition is requested. For
example, sequencing engine 202 may request task definition
302 for task 206A selected in operation 407 from task
repository 110. As discussed above, task definition 302 may
include the input parameter(s), the output parameter(s), the
implementation language, and method(s) or names of meth-
ods that are written in the implementation language.

At operation 414, a task definition is returned. For
example, task repository 110 may return task definition 302
to sequencing engine 202.

At operation 416, data is requested. For example,
sequencing engine 202 may request data from data reposi-
tory 112. The data may be associated with the input param-
eters as defined in task definition 302 returned in operation
414.

At operation 418, data is returned. For example, data
repository may return the data requested in operation 416 to
sequencing engine 202. In some embodiments, the data may
be associated with the run identification for sequence engine
202 to track the input and output data for each task 206A-C.

At operation 420, a process type is selected. For example,
sequencing engine 202 may select a process type that
corresponds to an implementation language included in task
definition 302 returned in operation 414. Once sequencing
engine 202 selects the process type, sequencing engine 202
may instantiate an instance of process 204 that corresponds
to the process type. In this way, process 204 may execute
methods of task 206A that are included in task definition 302
that are written in the implementation language included in
task definition 302.

At operation 422, the process executes a task according to
the task definition. For example, process 204 may execute

20

25

30

35

40

45

50

55

60

65

10

task 206A by executing method(s) included in task definition
302 returned in operation 424. During execution, process
204 may use data retrieved in operation 418. Further,
process 204 may generate output data that corresponds to
output parameters included in task definition 302.

At operation 424, a task output is returned. For example,
process 204 returns the result of task 206A, which may be
output that corresponds to the output parameters in task
definition 302 to sequencing engine 202. After process 204
returns the output to sequencing engine 202, process 204
may terminate.

At operation 426, the output is stored. For example,
sequencing engine 202 may store the data that is output of
task 206A in data repository 112. In some embodiments,
sequencing engine 202 may associate the output with the run
identifier retrieved in operation 410.

At operation 428, a run is updated. For example, sequenc-
ing engine 202 may update task repository 110 with the run
identifier and an indication that task 206 A completed execut-
ing.

After operation 428, in some instances, sequencing engine
202 may proceed to operation 407A, which is the same
operation as operation 407. At operation 407A, sequencing
engine 202 may determine a next task, such as task 206B
from the group of tasks 206B-C that may be executed by
matching the output parameters of task 206A with input
parameters of tasks 206B-C. If sequencing engine 202 does
not have other tasks in the group of tasks to execute,
sequencing engine 202 may proceed to operation 430.
Otherwise, operation 408 repeats for the next task, such as
task 206B (not shown).

At operation 430, a result is returned. For example,
sequencing engine 202 returns the data that is the output of
the last task 206 in the group of tasks 206 for display to
analytics engine interface 106. For illustrative purposes, the
last task in the group of tasks 206A-C, may be task 206C.

Going back to FIG. 3, in some embodiments, the methods
in tasks 206 may execute different models. Each model may
include methods with logic that manipulates data. The data
may be financial data, network data, configuration data, an
algorithm that models data according to a predefined set of
rules, etc. Each model and the logic in the model may be
written by different entities and, as a result, may be written
in different implementation languages. However, even
though the models are independent, the data that is an output
of one model may serve as an input to a different model.
Methods 500 and 600 below describe how the data is
processed automatically using a sequence of independent
models that may be written in different implementation
languages.

FIG. 5 is a flowchart of a method 500 for processing a
sequence of models, according to an embodiment. Method
500 may be performed using hardware and/or software
components described in FIGS. 1-3. Note that one or more
of the operations may be deleted, combined, or performed in
a different order as appropriate.

At operation 502, a request to execute a group of models
is received. For example, analytics engine interface 106 may
include a preconfigured group of models that are associated
with an identifier. The identifier itself, however, does not
indicate a sequence in which the models execute. As dis-
cussed above, the models in the group may be written in
different implementation languages and may perform dif-
ferent tasks. The models also execute independently from
other models. When analytics engine 104 receives the iden-
tifier, analytics engine 104 may determine the sequence of
models in the group.

US 11,726,818 B1

11

At operation 504, an order in which the sequence of
models in the group execute is determined. In some embodi-
ments, sequencing engine 202 may determine the order of
the models in the group and then execute the models in the
determined order as discussed in operation 506. In other
embodiments, sequencing engine 202 may determine which
model executes first, and then proceeds to execute the model
as discussed in operation 506. After the model executes,
sequencing engine 202 may return to operation 504 and
determine the next model in the sequence, and so forth. As
discussed above, sequencing engine 202 determines the first
model in the group as a model that includes input parameters
that do not match the output of the output parameters in
other models in the group. Sequencing engine 202 may
determine the input and output parameters of each model
using a model definition, which is an implementation of task
definition 302 discussed above. Sequencing engine 202 may
determine the next model, by determining the input param-
eters of the remaining models in the group that match the
output parameters of the first model. The process continues
until sequencing engine 202 identifies the last model in the
group. The last model may be a model that is the only model
that sequencing engine 202 has not executed or the model
with output parameters that do not match the input param-
eters of the other models in the group.

At operation 506, sequencing engine 202 initiates one or
more processes that execute the models. The method for
executing each model is discussed further in method 600. As
the first model executes, the output of the first model may be
an input to the second model, and so forth, until the last
model completes execution. Operation 506 is automatic, as
sequencing engine 202 determines when process 204 com-
pletes executing a first model and then instantiates the next
process 204 that executes a second model, and so forth until
sequencing engine 202 instantiates the last process 204 that
executes the last model. As discussed above, because the
models may be written in different implementation lan-
guages, sequencing engine 202 may instantiate processes
204 that corresponds to the implementation language of each
model.

At operation 508, a result generated by the group of
models is determined. For example, the output of the last
model in the sequence of models may be the result. Once the
result is generated, the output may be transmitted for display
to analytics engine interface 106 and for storage to data
repository 112.

FIG. 6 is a flowchart of a method 600 for executing a
model in the group of models, according to an embodiment.
Method 600 may be performed using hardware and/or
software components described in FIGS. 1-3. Note that one
or more of the operations may be deleted, combined, or
performed in a different order as appropriate. Method 600
may be executed for each model in the group of models
discussed in method 500.

At operation 602, a model definition is received. As
discussed above, a model definition may be a particular
implementation of task definition 302. The model definition
may define input parameter(s), output parameter(s), an
implementation language, and method(s) associated with the
model. In some instances, sequencing engine 202 may
retrieve the model definition from a database, such as a
database included in task repository 110 or from another
memory storage.

At operation 604, data is retrieved. For example, sequenc-
ing engine 202 may retrieve the data that corresponds to the
input parameters in the model definition from data reposi-
tory 112.

20

25

30

35

40

45

50

55

60

65

12

At operation 606, a process is generated. For example,
sequencing engine 202 may generate an instance of process
204 to execute the model. Process 204 may correspond to an
implementation language included in the model definition.
In this way, process 204 may depend on the implementation
language used by the model, and different types of processes
204 may be generated for models with methods written in
different implementation languages. Once generated, pro-
cess 204 may execute independently from sequencing
engine 202.

At operation 608, the process operates on the data in the
model. For example, process 204, may execute methods
included in the model definition using the data retrieved in
operation 604. Process 204 executes the methods until
process 204 determines output that corresponds to the output
parameters of the model as defined in the model definition.

At operation 610, the output is stored. For example,
process 204 or sequencing engine 202 may store the output
determined in operation 608 in data repository 112. In this
way, the output may be retrieved as an input to a subsequent
model. Alternatively, the output may be stored in sequencing
engine 202 and displayed using analytics engine interface
106.

FIG. 7 is a flowchart of a method 700 for configuring a
model definition, according to an embodiment. Method 700
may be performed using hardware and/or software compo-
nents described in FIGS. 1-3. Note that one or more of the
operations may be deleted, combined, or performed in a
different order as appropriate. As discussed above, the model
definition is an example of task definition 302 discussed
above. Accordingly, the method for configuring a model
definition may also be applied to configuring task definition
302.

At operation 702, input parameter(s) are configured. For
example, analytics engine interface 106 may define one or
more input parameters to include in the model definition.
The input parameters may indicate a location, e.g. a table or
a column in the database that stores the data, and also define
data types that correspond to the input parameter(s).

At operation 704, output parameters are configured. For
example, analytics engine interface 106 may define one or
more output parameters to include in the model definition.
The output parameters may indicate a location, e.g. a table
or a column in the database that stores data that is generated
by the model. Output parameters may also define data types
that correspond to the input parameter(s).

At operation 706, the implementation language is config-
ured. For example, analytics engine interface 106 may
configure an implementation language that corresponds to
the methods in the model. As discussed above, the type of
the implementation language may determine the type of
process 204 that sequencing engine 202 may use to execute
the model.

At operation 708, one or more methods are configured.
For example, one or more methods are included in the model
definition. The methods may be written in the implementa-
tion language determined in operation 706 or may be
executables, scripts, etc., that correspond to the implemen-
tation language. The method(s) may be executed by process
204 to determine the output of the model. In some embodi-
ments, the model definition may include the names of the
methods, while the methods themselves maybe stored as
executables or scripts in task repository 110.

Referring now to FIG. 8 an embodiment of a computer
system 800 suitable for implementing, the systems and
methods described in FIGS. 1-7 is illustrated.

US 11,726,818 B1

13

In accordance with various embodiments of the disclo-
sure, computer system 800, such as a computer and/or a
server, includes a bus 802 or other communication mecha-
nism for communicating information, which interconnects
subsystems and components, such as a processing compo-
nent 804 (e.g., processor, micro-controller, digital signal
processor (DSP), graphics processing unit (GPU), etc.), a
system memory component 806 (e.g., RAM), a static storage
component 808 (e.g., ROM), a disk drive component 810
(e.g., magnetic or optical), a network interface component
812 (e.g., modem or Ethernet card), a display component
814 (e.g., CRT or LCD), an input component 818 (e.g.,
keyboard, keypad, or virtual keyboard), a cursor control
component 820 (e.g., mouse, pointer, or trackball), a loca-
tion determination component 822 (e.g., a Global Position-
ing System (GPS) device as illustrated, a cell tower trian-
gulation device, and/or a variety of other location
determination devices known in the art), and/or a camera
component 823. In one implementation, the disk drive
component 810 may comprise a database having one or
more disk drive components.

In accordance with embodiments of the disclosure, the
computer system 800 performs specific operations by the
processor 804 executing one or more sequences of instruc-
tions contained in the memory component 806, such as
described herein with respect to the mobile communications
devices, mobile devices, and/or servers. Such instructions
may be read into the system memory component 806 from
another computer readable medium, such as the static stor-
age component 808 or the disk drive component 810. In
other embodiments, hard-wired circuitry may be used in
place of or in combination with software instructions to
implement the disclosure.

Logic may be encoded in a computer readable medium,
which may refer to any medium that participates in provid-
ing instructions to the processor 804 for execution. Such a
medium may take many forms, including but not limited to,
non-volatile media, volatile media, and transmission media.
In one embodiment, the computer readable medium is
non-transitory. In various implementations, non-volatile
media includes optical or magnetic disks, such as the disk
drive component 810, volatile media includes dynamic
memory, such as the system memory component 806, and
transmission media includes coaxial cables, copper wire,
and fiber optics, including wires that comprise the bus 802.
In one example, transmission media may take the form of
acoustic or light waves, such as those generated during radio
wave and infrared data communications.

Some common forms of computer readable media
includes, for example, floppy disk, flexible disk, hard disk,
magnetic tape, any other magnetic medium, CD-ROM, any
other optical medium, punch cards, paper tape, any other
physical medium with patterns of holes, RAM, PROM,
EPROM, FLASH-EPROM, any other memory chip or car-
tridge, carrier wave, or any other medium from which a
computer is adapted to read. In one embodiment, the com-
puter readable media is non-transitory.

In various embodiments of the disclosure, execution of
instruction sequences to practice the disclosure may be
performed by the computer system 800. In various other
embodiments of the disclosure, a plurality of the computer
systems 800 coupled by a communication link 824 to the
network (e.g., such as a LAN, WLAN, PTSN, and/or various
other wired or wireless networks, including telecommuni-
cations, mobile, and cellular phone networks) may perform
instruction sequences to practice the disclosure in coordi-
nation with one another.

—_

5

20

25

30

35

40

45

50

55

60

65

14

The computer system 800 may transmit and receive
messages, data, information and instructions, including one
or more programs (i.e., application code) through the com-
munication link 824 and the network interface component
812. The network interface component 812 may include an
antenna, either separate or integrated, to enable transmission
and reception via the communication link 824. Received
program code may be executed by processor 804 as received
and/or stored in disk drive component 810 or some other
non-volatile storage component for execution.

Where applicable, various embodiments provided by the
disclosure may be implemented using hardware, software, or
combinations of hardware and software. Also, where appli-
cable, the various hardware components and/or software
components set forth herein may be combined into compos-
ite components comprising software, hardware, and/or both
without departing from the scope of the disclosure. Where
applicable, the various hardware components and/or soft-
ware components set forth herein may be separated into
sub-components comprising software, hardware, or both
without departing from the scope of the disclosure. In
addition, where applicable, it is contemplated that software
components may be implemented as hardware components
and vice-versa.

Software, in accordance with the disclosure, such as
program code and/or data, may be stored on one or more
computer readable mediums. It is also contemplated that
software identified herein may be implemented using one or
more general purpose or specific purpose computers and/or
computer systems, networked and/or otherwise. Where
applicable, the ordering of various steps described herein
may be changed, combined into composite steps, and/or
separated into sub-steps to provide features described
herein.

The foregoing disclosure is not intended to limit the
disclosure to the precise forms or particular fields of use
disclosed. As such, it is contemplated that various alternate
embodiments and/or modifications to the disclosure,
whether explicitly described or implied herein, are possible
in light of the disclosure. Having thus described embodi-
ments of the disclosure, persons of ordinary skill in the art
will recognize that changes may be made in form and detail
without departing from the scope of the disclosure. Thus, the
disclosure is limited only by the claims.

What is claimed is:

1. A method comprising:

receiving, at an analytics engine executing on a processor,

a request that initiates execution of tasks, wherein the
tasks are programmed to execute in different program-
ming languages;

determining a sequence of tasks from a first task to a last

task in the tasks by matching a subset of input param-
eters in each task to a subset of output parameters of
other tasks in the tasks;

executing the sequence of tasks from the first task to the

last task, wherein executing a task in the sequence of

tasks comprises:

retrieving a pre-configured definition of the task from a
memory storage;

retrieving, using the pre-configured definition of the
task, data from the memory storage;

generating a process for executing the task, wherein a
type of the process is based on an implementation
language included in the pre-configured definition of
the task; and

operating, using the process and at least one execution
method in the pre-configured definition of the task,

US 11,726,818 B1

15

on the data to determine an output that corresponds
to at least one output parameter of the task; and
determining a result of the sequence of tasks, wherein the
result is an output of the last task in the sequence of
tasks.
2. The method of claim 1, further comprising:
storing the output of the task in the memory storage,
wherein the output is an input to a subsequently execut-
ing task in the sequence of tasks.

3. The method of claim 1, wherein the memory storage
includes a first memory storage and a second memory
storage and the pre-configured definition of the task is
retrieved from the first memory storage and the data is
retrieved from the second memory storage.

4. The method of claim 1, wherein the request includes an
identifier that corresponds to a group of tasks to be executed.

5. The method of claim 1, wherein the first task is
configured to execute a first method in a first programming
language and the last task is configured to execute a second
method in a second programming language different from
the first programming language.

6. The method of claim 5, wherein the first task is different
from the last task.

7. The method of claim 1, wherein the determining the
sequence of tasks further comprises:

identifying a task that includes input parameters that do

not match output parameters of the other tasks in the
tasks as the first task.

8. The method of claim 1, further comprising:

configuring a pre-configured definition for the first task,

wherein the pre-configured definition includes at least
one input parameter and at least one output parameter
of the first task.

9. The method of claim 1, further comprising:

configuring a pre-configured definition for the first task,

wherein the pre-configured definition includes a pro-
gramming language associated with the first task.

10. The method of claim 1, further comprising:

configuring a pre-configured definition for the first task,

wherein the pre-configured definition includes at least
one method that a process executes while executing the
first task.

11. The method of claim 1, wherein the executing the
sequence of tasks from the first task to the last task occurs
automatically until the last task completes executing.

12. A non-transitory machine-readable medium having
stored thereon machine-readable instructions executable to
cause a machine to perform operations for executing tasks,
the operations comprising:

receiving, at an analytics engine executing on a processor,

a request that initiates execution of the tasks, wherein
the tasks are programmed to execute in different pro-
gramming languages;

determining, by matching a subset of input parameters

and a subset of output parameters of each task in the
tasks to other tasks in the tasks, a sequence of tasks
from a first task to a last task;

executing the tasks from the first task to the last task

according to the sequence of tasks, wherein the execut-

ing further comprises:

retrieving a pre-configured definition of the first task
from a first memory storage;

retrieving, using the pre-configured definition of the
first task, first data from a second memory storage;

generating a first process for executing the first task,
wherein a type of the first process is based on a first

20

25

35

40

45

55

60

65

16

programming language defined in the pre-configured
definition of the first task;
operating, using the first process and at least one
execution method in the pre-configured definition of
the first task, on the first data to determine first output
data;
storing the first output data in the second memory
storage;
retrieving a pre-configured definition of a second task
in the sequence of tasks from the first memory
storage, the second task executing after the first task;
retrieving, using the pre-configured definition of the
second task, second data from the second memory
storage, wherein the second data includes at least
part of the first output data;
generating a second process for executing the second
task, wherein a type of the second process is based
on a second programming language defined in the
pre-configured definition of the second task; and
operating, using the second process and at least one
execution method in the pre-configured definition of
the second task, on the second data to determine
second output data; and
determining a result of the sequence of tasks, wherein the
result is as an output of the last task in the sequence
tasks that is executed after the second task.
13. The non-transitory machine-readable medium of
claim 12, wherein the operations further comprise:
retrieving a pre-configured definition of a third task in the
sequence of tasks from the first memory storage;
retrieving, using the pre-configured definition of the third
task, third data from the second memory storage,
wherein the third data includes at least a portion of the
second output data;
generating a third process for executing the third task,
wherein a type of the third process is based on a third
programming language associated with the third task,
wherein the third programming language is included in
the pre-configured definition of the third task; and
operating, using the third process and at least one execu-
tion method in the pre-configured definition of the third
task, on the third data to determine a third output data
that corresponds to at least one output parameter of the
third task; and
determining the third task as the last task and the third
output data as the result.
14. The non-transitory machine-readable medium of
claim 12, wherein the operations further comprise:
configuring the pre-configured definition for the first task,
wherein the pre-configured definition includes a pro-
gramming language associated with the first task and at
least one method that the first process executes while
executing the first task.
15. The non-transitory machine-readable medium of
claim 12, wherein the operations further comprise:
determining a subset of output parameter names of the
first task;
determining that the subset of output parameter names
matches a subset of input parameter names of the
second task; and
selecting the second task as a next task for the sequence
of tasks.
16. A system, comprising:
a non-transitory memory storing instructions; and
one or more hardware processors coupled to the non-
transitory memory and configured to read the instruc-

US 11,726,818 B1

17

tions from the non-transitory memory to cause the
system to perform operations comprising:
receiving, at an analytics engine, a request that initiates
execution of tasks, wherein at least some of the tasks
are executable in different programming languages;
determining a sequence of tasks from the tasks by
matching a subset of input parameters and a subset of
output parameters of each task in the tasks to other
tasks in the tasks from a first task to a last task,
wherein the subset of input parameters and the subset
of output parameters are designated as required
parameters in a task definition;
executing the sequence of tasks from the first task to the
last task, wherein an output of a currently executing
task is an input to a subsequently executing task,
wherein the executing further comprises:
generating a process for each task that corresponds to
a programming language associated with each
task; and
executing each task using the corresponding process;
and

18

determining a result of the sequence of tasks, wherein
the result is an output of the last task in the sequence
of tasks.

17. The system of claim 16, wherein the operations further
comprise:

retrieving a pre-configured definition for each task; and

determining the programming language associated with

each task from the pre-configured definition.

18. The system of claim 17, wherein the pre-configured
definition for each task includes at least one method that
manipulates data associated with the task.

19. The system of claim 16, wherein determining the
sequence of tasks further comprises:

identifying a task that includes input parameters that do

not match output parameters of the other tasks in the
tasks as the first task.

20. The system of claim 16, wherein determining the
sequence of tasks further comprises:

identifying a task that includes output parameters that do

not match input parameters of the other tasks in the
tasks as the last task.

* ok ok ok ok

