
(12) United States Patent
Hamburger et al.

US0097.12398B2

US 9,712,398 B2
Jul.18, 2017

(10) Patent No.:
(45) Date of Patent:

(54) AUTHENTICATING CONNECTIONS AND
PROGRAM IDENTITY IN AMESSAGING
SYSTEM

(71) Applicant: BlackRock Financial Management,
Inc., New York, NY (US)

(72) Inventors: Elliot Hamburger, Teaneck, NJ (US);
Jonathan S. Harris, Englewood, NJ
(US); Jeffrey A. Litvin, New York, NY
(US); Sauhard Sahi, New York, NY
(US); John D. Valois, New York, NY
(US); Ara Basil, Armonk, NY (US);
Randall B. Fradin, New York, NY
(US)

(73) Assignee: BlackRock Financial Management,
Inc., New York, NY (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21)

(22)

Appl. No.: 15/011,334

Filed: Jan. 29, 2016

Prior Publication Data

US 2016/0226835 A1 Aug. 4, 2016
(65)

Related U.S. Application Data
Provisional application No. 62/109.512, filed on Jan.
29, 2015.

(60)

Int. C.
H04L 29/06
H04L 12/24

(51)
(2006.01)
(2006.01)

(Continued)
U.S. C.
CPC H04L 4 1/20 (2013.01); G06F 15/167

(2013.01); H04L 5 1/30 (2013.01); H04L 5 1/36
(2013.01);

(52)

(Continued)

Cietiewice ispatcher
22

narage 3:
assif

Select contector

Serid corfirina or message

(58) Field of Classification Search
CPC ... H04L 63/0428; H04L 15/167; H04L 51/36;

H04L 67/42: HO4L 41/20: HO4L 51/30;
HO4L 63/0442

(Continued)

(56) References Cited

U.S. PATENT DOCUMENTS

6/1999 Green et al.
11/2000 Baltzley G06F 21 OO

380,255

5,913,024 A
6,154,543 A *

(Continued)

FOREIGN PATENT DOCUMENTS

WO-2004/072800 A2
WO-2008/085206 A2
WO-2010.014386 A1

8, 2004
T 2008
2, 2010

WO
WO
WO

OTHER PUBLICATIONS

Roman, M., et al., “Reflective Middleware: From Your Desk to Your
Hand,” Reflective Middleware, IEEE Distributed Systems Online,
2001, 19 Pages, vol. 2, No. 5.

Primary Examiner — Sarah Su
(74) Attorney, Agent, or Firm — Fenwick & West LLP

(57) ABSTRACT
A messaging system enables client applications to send and
receive messages. The messaging system includes indepen
dent component programs performing different functions of
the messaging system, such as connection managers that
maintain network connections with the client applications, a
message router that sends received messages to recipient
applications through network connections, and a dispatcher
that authenticates other component programs. A messaging
server may authenticate client applications using certificate
based authentication (e.g., private and public keys), authen
tication transfer from another trusted messaging server, or
other methods (e.g., user name and password). To authen
ticate a component program, the dispatcher compares instan
tiation information (e.g., user identity, process identifier,

(Continued)

Connection Manager vessage Route
240

Establish Sessor
35

instruct to send confirmation all al message 380

37
Seind response

38
Forward esponse

39

US 9,712,398 B2
Page 2

creation time) of the component program provided by the
operating system with instantiation information saved in a
shared memory at the time of the component programs
instantiation. In response to a match, the dispatcher provides
the component program with secure information through an
inter-process communication socket.

14 Claims, 7 Drawing Sheets

(51) Int. Cl.
H04L 2/58 (2006.01)
G06F 5/67 (2006.01)

(52) U.S. Cl.
CPC H04L 63/0442 (2013.01); H04L 67/42

(2013.01)
(58) Field of Classification Search

USPC ... 713/168; 726/30
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,338,089 B1 1/2002 Quinlan
6,539,093 B1 3/2003 Asad et al.
8, 112,483 B1 2/2012 Emigh et al.
8.255.455 B2 8/2012 Koegel et al.
8,369,326 B2 2/2013 Ansari et al.
8,392,555 B2 3/2013 Gale et al.
8,453,163 B2 5/2013 Kothamasu et al.
8.489,674 B2 7/2013 Srivastava et al.

2003/0145237 A1* 7/2003 Chang HO4L 63,0428
T13, 182

2005/0O86509

2005/O125,661

2006/02361.25

2008, OO16221
2008/O127208
2008/O189793

2009/0052675

2009/0172172
2010.0005512

2010/0228973

2010/02292.19

2012/OO 11353

2012/OO.72715

2012/0324069
2013/O198763

2014/O115340

2014/0245262
2015.OO398.91

2015,0082025

2016/0134423

* cited by examiner

4, 2005

6, 2005

10, 2006

1, 2008
5/2008
8, 2008

2, 2009

T/2009
1, 2010

9, 2010

9, 2010

1, 2012

3, 2012

12/2012
8, 2013

4, 2014

8, 2014
2, 2015

3, 2015

5, 2016

Ranganathan GO6F 21.57
726/27

Vaidyanathan GO6F 21/53
T13,166

Sahita G06F 12,1458
T13, 193

Xu et al.
Bedi et al.
Kirkup GO6F 21/53

726/27
LevOW G06F 21.33

380,278
Graham et al.
Wahl HO4L 63.08

T26/4
Dancer HO4L 12.58

T13,168
Mendonca GO6F 21.57

T26/4
Hayashida GO6F 21.57

T13/1
Yonge, III HO4L 12/2801

713,155
Nori et al.
Kunze G06F 8.60

T19,318
Lee HO4L 63.08

T13, 182
Hill et al.
Ignatchenko GO6F 21,575

713,171
Deshpande HO4L 9.0847

713,155
Harjula HO4L 9.3247

713, 176

US 9,712,398 B2 Sheet 1 of 7

80 % ?.

Jul.18, 2017 U.S. Patent

US 9,712,398 B2 Sheet 2 of 7 Jul.18, 2017 U.S. Patent

US 9,712,398 B2 U.S. Patent

US 9,712,398 B2 U.S. Patent

æ6esseu pu3S

U.S. Patent Jul.18, 2017 Sheet S of 7 US 9,712,398 B2

Client Device 1 1 O Messaging Server
(Cient application 205) 120

O (Dispatcher 220 and
Another Messaging Server 120 Message Router 240)

Initiate Connection
50

Send Challenge
55

Generate Response
520

Send Response
525

Check Response
530

F.G. 5

US 9,712,398 B2 Sheet 6 of 7 Jul.18, 2017 U.S. Patent

Água/A

U.S. Patent Jul.18, 2017 Sheet 7 Of 7 US 9,712,398 B2

Dispatcher Message Router 240 or
220 Connection Manager 230

Connect to shared
memory 705

Create PC socket
ZO

Check if running, if not instantiate

720
Request private key

715
Connect with PC Socket

L. Verify identity 730

Send private key or close IPC socket

FG. 7

US 9,712,398 B2
1.

AUTHENTCATING CONNECTIONS AND
PROGRAM IDENTITY IN AMESSAGING

SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims the benefit of U.S. Provisional
Patent Application No. 62/109.512, filed Jan. 29, 2015,
which is incorporated by reference herein in its entirety.

BACKGROUND

The present disclosure generally relates to a messaging
oriented middleware system and, more particularly, to estab
lishing a chain of trust for secure connections between
component programs of the messaging system and a client
application.

Messaging-oriented middleware systems (also referred to
herein as “messaging systems) facilitate communication
between client applications distributed across diverse oper
ating environments. For example, a messaging system
enables communication between client applications
executed by different servers with different operating sys
tems. The messaging system includes different component
programs on a messaging server as well as a client device.
Establishing a chain of trust between these programs is
difficult because many of these programs are started auto
matically without direct intervention by a user. When a user
starts a program, the user may establish a chain of trust using
a user name and password that can be verified through a
system such as lightweight directory access protocol
(LDAP). However, programs started automatically cannot
request a password from a user. This problem occurs both
when a client device establishes a connection with the
messaging system and when the messaging system instan
tiates a component program. Overall, password-based sys
tems are inadequate for authenticating automatically initi
ated programs in a messaging-oriented middleware system.

SUMMARY

A messaging system enables client applications to send
and receive messages in a format independent of the client
applications respective operating environments. The mes
saging system includes independent component programs
performing different functions of the messaging system to
improve messaging system reliability and flexibility. The
independent component programs of the messaging server
include persistent connection managers that maintain con
nections with the client applications as well as an easily
updateable message router that directs received messages to
recipient applications through corresponding network con
nections. The component programs may also include an
easily updateable dispatcher that establishes connections,
authenticates client applications and the component pro
grams of other messaging servers, and manages the connec
tion managers.

According to one aspect, the messaging system ensures
authentication of component programs by performing the
following steps. The dispatcher stores a private key in a
memory accessible by a root user identity and creates an
inter-process communication (IPC) socket connection with a
component program that is either a message router or a
connection manager. The component program does not have
permission to access the memory storing the private key.
The dispatcher determines that the component program is

10

15

25

30

35

40

45

50

55

60

65

2
running. In response to the component program connecting
to the IPC socket connection, the dispatcher (a) obtains a
first set of instantiation information describing the compo
nent program from shared memory; (b) obtains a second set
of instantiation information from an operating system
regarding the component program; (c) compares the first
instantiation information to the second instantiation infor
mation; and (d) sends the component program the private
key through the IPC socket connection if the first instantia
tion information matches the second instantiation informa
tion.

According to another aspect, a messaging system authen
ticates network connections between a remote program and
a messaging server by performing the following steps. The
connection manager receives, at one of its ports, a network
connection transferred from the dispatcher. The message
router sends (through the connection manager) a challenge
string containing data unique to the network connection. The
message router receives (through the connection manager) a
challenge string response from the remote program. The
challenge String response includes a signature on the chal
lenge String from with a private key paired with an approved
public key. The message router verifies whether the received
challenge String response is valid for the network connec
tion. In response to determining that the received challenge
string response is valid, the message router processes mes
sages sent through the network connection. In response to
determining that the received challenge String response is
invalid, the message router instructs the connection manager
to disconnect from the client application by closing the
network connection.

According to another aspect, the messaging system per
forms authentication transfer for a client application having
an authenticated network connection with a first messaging
server in a first messaging environment to enable the client
application to login to a second messaging server in a
different messaging environment by performing the follow
ing steps. The second messaging server receives a request
from the client application to initiate a connection and sends
a challenge string to the client application. The second
messaging server receives a login request from the client
application, which includes the client applications user
identity and incorporates the second messaging server's
challenge string, as encrypted by the first messaging server
using the first messaging server's signature. The second
messaging server decrypts the data in the login request and
verifies the authentication credential included in the login
request by Verifying that the challenge String matches the
originally sent challenge string. If the authentication cre
dential is valid, the second messaging server verifies the user
identity and messaging environment metadata included in
the login request. If the authentication credential, user
identity, and messaging environment metadata are valid, the
second messaging server processes messages received from
the client application.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure (FIG. 1 is a block diagram of a system environ
ment including a messaging system and client devices, in
accordance with an embodiment.

FIG. 2 is a block diagram illustrating modules within a
client device and messaging server, in accordance with an
embodiment.

FIG. 3 is an interaction diagram illustrating a client
application establishing a connection with the messaging
system, in accordance with an embodiment.

US 9,712,398 B2
3

FIG. 4 is an interaction diagram illustrating a client
application sending and delivering a message to the mes
saging system, in accordance with an embodiment.

FIG. 5 is an interaction diagram illustrating an example
process of authenticating a network connection, in accor
dance with an embodiment.

FIG. 6 is an interaction diagram illustrating an example
process of transferring authentication for a client device
between messaging servers, in accordance with an embodi
ment.

FIG. 7 is an interaction diagram illustrating an example
process of authenticating identity of a component program,
in accordance with an embodiment.

DETAILED DESCRIPTION

The Figures (FIGS.) and the following description
describe certain embodiments by way of illustration only.
One skilled in the art will readily recognize from the
following description that alternative embodiments of the
structures and methods illustrated herein may be employed
without departing from the principles described herein.
Reference will now be made in detail to several embodi
ments, examples of which are illustrated in the accompany
ing figures. It is noted that wherever practicable similar or
like reference numbers may be used in the figures and may
indicate similar or like functionality.

Figure (FIG. 1 is a block diagram of a system environ
ment including messaging system and client devices 110A
and 110B (generally, client devices 110), in accordance with
an embodiment. The messaging system includes messaging
servers 120A and 120B (generally, messaging servers 120),
which are communicatively coupled to each other and to
client devices 110A and 110B through the network 130
(which may include a cloud of messaging servers 120).
The client devices 110 are computing devices including

both user devices and servers. User devices include appli
cations to enable users to view, input, manipulate, and
modify information, which may be stored locally or
retrieved from another device. Example user devices include
desktop computers, laptop computers, servers, Smartphones,
tablet computers, or any other type of network-enabled
device. Servers include databases that store information or
programs that generate, modify, and delete information, both
automatically and in response to commands from user
devices and other servers. Example servers include rack
mounted servers with a Unix-based operating system. Some
client devices 110 have characteristics of both user devices
and servers.
The messaging system facilitates communication between

client applications executed by client devices 110 by pro
viding messaging-oriented middleware functionality. A cli
ent application communicates with at least one other client
application through messages passed by the messaging
system. In a typical use case referred to herein, client device
110A executes a client application that communicates with
another client application executed by client device 110B
through the messaging system. However, different client
applications executed by the same client device 110 may
communicate through the messaging system, and different
instances of the same client application may communicate
through the messaging system.

The messaging system includes one or more messaging
servers 120 (e.g., messaging servers 120A and 120B), which
are co-located with client devices 110, remotely located
from client devices 110 (e.g., in a data center), or geographi
cally dispersed (e.g., in a plurality of data centers, virtual

10

15

25

30

35

40

45

50

55

60

65

4
machines, or cloud computing environments). Using a plu
rality of messaging servers 120 beneficially improves reli
ability and Scalability of the messaging system. For
example, the messaging system may include resiliency
functions that identify when a messaging server 120 has
failed and distribute the functionality of the messaging
server 120 to other active messaging servers 120 or to a
backup messaging server 120. Furthermore, the messaging
system uses load balancing to distribute messages between
similar client applications to improve responsiveness.
As used herein, a “message” refers to any communication

between client applications. Example messages include a
request for information from a client application, a response
including the requested information, unrequested informa
tion (e.g., an update, a status report), a command for a client
application, and a confirmation indicating a result of the
command. The message may include encoded information
representing text, numerical data, structured data (e.g., a
database table), audio data, image data, video data, program
matic commands, or a combination thereof. The message
may further include a header with routing information used
to identify message recipients or topics that recipients are
registered to receive.
The messaging system sends and receives messages

through connections with client applications, which are
typically persistent connections provided by a protocol with
guaranteed transmission (e.g., Transmission Control Proto
col (TCP), Stream TCP). Using a guaranteed-delivery pro
tocol beneficially improves reliability of the messaging
system and simplifies development of client applications
that interface with the messaging system. In general, the
messaging System receives a message, stores the message,
identifies one or more client applications to receive the
message, and sends the message to the identified client
applications. Typically, the messaging system retains the
message in storage only until the messaging system verifies
delivery of the message to the identified client applications.
The messaging system Supports one or more messaging

modes, which indicate the number of message recipients and
whether a response is expected. The messaging modes
include broadcast mode, load balanced request/response
(semaphore) mode, session (continuous semaphore) mode,
fanout request mode, inter-process communication (IPC)
mode, or a combination thereof.

In broadcast mode, a client application sends a message to
one or more client applications without expecting a
response. The broadcast message indicates a topic to which
the client application is publishing the message. The mes
saging system delivers the broadcast message to client
applications subscribed to the topic. A client application may
both publish and subscribe to a topic, and multiple client
applications may publish to a topic. If no client application
is Subscribed to the topic, then the messaging system does
not deliver the broadcast message to any client application.
To reply to a broadcast message, a client application may
publish a broadcast message to a topic to which the pub
lishing client application is Subscribed or may use a different
messaging mode.

In Semaphore mode, a client application sends a single
request to a specified client application and expects one or
more response messages from the other client application. In
continuous semaphore mode, a client application sends
multiple request messages to a specified client application
and expects one or more responses from the other client
application. In a fanout request mode, a client application
sends request messages to all client applications listening on
a particular topic and expects to receive response messages

US 9,712,398 B2
5

from all of them. For example, a request mode message is
sent to all client applications of a particular program type,
belonging to a particular organization, or both. In IPC mode,
two client applications exchange messages. For example,
two client applications on the same client device 110 may 5
exchange messages in IPC mode to facilitate remote method
calls or execution or communication between two different
operating environments.
The client devices 110 and the messaging servers 120 are

connected via a network 130, which may be any suitable 10
communications network for data transmission. The net
work 130 uses standard communications technologies and/
or protocols and can include wide-area networks (e.g., the
Internet), local-area networks (e.g., an organization’s
intranet), or both. In another embodiment, the network 130 15
includes custom and/or dedicated data communications
technologies.

Typically, both client devices 110 and messaging servers
120 include hardware and software to connect to network
130 (e.g., via Ethernet, Wi-Fi, or other telecommunication 20
technologies), Store information (e.g., volatile-memory,
non-volatile memory, another computer-readable medium),
and process information (e.g., a processor). A client device
110 or messaging server 120 may optionally include hard
ware and Software to present information (e.g., a display 25
device, a projector, an audio speaker), to receive user
commands and other user inputs (e.g., an input peripheral, a
microphone, a camera), or both.

Although FIG. 1 illustrates two instances of the client
devices 110 and the messaging servers 120, the system 30
environment may include any number of these devices. The
messaging system may include a single messaging server
120 or a plurality of messaging servers 120. Where the
messaging system includes a plurality of messaging servers
120 in a data center, the messaging servers 120 may be 35
hierarchically organized. Such as in a tree structure with one
messaging server 120 serving as a root node for the data
center, or with any other topology. The messaging system
may be distributed across a plurality of data centers. In this
case, one or more messaging servers 120 may serve as 40
global hubs that coordinate communication between mes
saging servers 120 in different data centers. If the messaging
servers 120 are organized in a tree hierarchy within the data
center, the messaging servers 120 serving as root nodes of
respective data centers may also be child nodes with respect 45
to global hub nodes.
System Architecture

FIG. 2 is a block diagram illustrating modules within a
client device 110 and messaging server 120, in accordance
with an embodiment. Some embodiments of the client 50
device 110 and messaging server 120 have different or
additional modules than the ones described here. Similarly,
the functions can be distributed among the modules in a
different manner than is described here, and the modules of
the messaging server 120 may be executed by multiple 55
messaging servers 120.
The client device includes one or more client applications

205. A client application 205 refers to any application that
communicates through the messaging system 120. Example
client applications Support database management, person- 60
to-person communication, multimedia streaming, operations
management, accounting, regulatory compliance, asset trad
ing, asset monitoring, or any other enterprise or recreational
function. A client application may include an application
programming interface (API) that other programs may use to 65
request information from the client application 205 or to
send commands to the client application 205. A client

6
application 205 may include a graphical user interface (GUI)
for a user to review, provide, and manipulate information.
The client application 205 generates a message for the

messaging System, and sends the message to a messaging
server 120. From the standpoint of the messaging system
120, the message is raw data that is not interpreted by the
messaging system itself. This data could represent anything,
Such as raw text, structured data, a serialized Java object or
a structured document in JavaScript Object Notation (JSON)
or Extensible Markup Language (XML). To generate a
message, the client application 205 generates a message
body that incorporates the information and a message header
that identifies a type of the message and any necessary
routing information. For example, the client application 205
may encode the information into a byte format. As part of
encoding the information, the client application 205 may
encrypt the information to improve security. As expected,
the client application 205 may also receive messages from
the messaging server 120.
The client application 205 generates a header with param

eters may include any information not part of the main body
of content of the message. Such as a messaging mode (e.g.,
broadcast mode, Semaphore mode) and one or more topic
identifiers corresponding to the messaging mode, or any
other necessary routing information. For the broadcast
mode, the topic identifier identifies which recipient client
applications 205 are subscribed. For other messaging modes
(e.g., semaphore mode, request mode, IPC mode), a publish
Subscribe model or a direct addressing model may be used
Such that a set of one or more receiving applications 205 use
a semaphore register for a topic identifier.
The messaging server 120 is comprised of three separate

programs modules including a dispatcher 220, one or more
connection managers 230, a message router 240, and a state
Store 250.
The client application 205 is communicatively coupled to

the dispatcher 220 and connection manager 230 by network
connections 215 and 217, respectively. The client applica
tion 205 is not necessarily simultaneously coupled to the
dispatcher 220 and connection manager 230 by network
connection 215 and 217, however. For example, the client
application 205 establishes network connection 215 with the
dispatcher 220, which transfers the network connection 215
to the connection manager 230, thereby establishing net
work connection 217. The network connections 215 and 217
are generally transport-layer network connections imple
mented using connection oriented communications protocol
having a guaranteed transmission mechanism (e.g., TCP,
stream TCP). However, the transport-layer network connec
tions 215 and 217 may be replaced or supplemented by
another connection oriented network communication
mechanism.
The dispatcher 220 is communicatively coupled to the

connection manager 230 using IPC socket connections 225.
The IPC socket connections 225 enables ordered reliable
sending of datagrams, stream, and file descriptors between
processes in the operating system kernel, so the IPC Socket
connections 225 may be used to pass network connections
(e.g., 215 and 217) between program modules (e.g., 220 and
230) executed within the same operating environment. For
example, the IPC socket connections 225 may be a Unix
domain socket. The dispatcher 220 is similarly coupled to
the message router 240 using IPC socket connection 227.
The message router 240 is connected to each connection

manager 230 through a pair of messaging queues 235, one
in each direction. These queues 235 are an IPC mechanism
that delivers data objects in the same order they were sent.

US 9,712,398 B2
7

This transmission of data objects is reliable and persistent.
In other words, the messaging queue has a first in, first out
(FIFO) structure. A messaging queue includes internal struc
ture that separates discrete data objects placed in the mes
saging queue 235, which facilitates reading of the messaging
queue by a recipient component program. One example
messaging queue 235 is a Portable Operating System Inter
face (POSIX) messaging queue. Data objects in a messaging
queue 235 are generally stored in memory allocated to the
kernel of an operating system executed by a messaging
server 120. Alternatively or additionally, data objects in a
messaging queue 235 are stored in a file system or other
kernel persistent memory such as state store 250.
The dispatcher 220, the connection manager 230, and the

message router 240 may access, write, modify, and delete
data in the shared memory 250 through memory connections
223, 233, and 243, respectively. The shared memory 250
may be memory mapped location accessible by the program
modules or a Subset thereof. Accordingly, different program
modules may share the same objects in memory, facilitating
inter-process communication between the program modules.
As an example, the memory connections 223, 233, and 243
access POSIX memory mapped files. However, a given
program component cannot necessarily access all memory
locations in the shared memory 250. Instead, some memory
locations are accessible only to a Subset of the component
programs, as described in further detail below.
The dispatcher 220 establishes network connection 215

with a client application 205 in response to receiving a
connection request from the client application 205.

Having established the network connection 215, the dis
patcher 220 selects a connection manager 230 and transfers
the network connection 215 to the selected connection
manager 230. The dispatcher 220 selects a connection
manager 230 according to a load balancing mechanism. A
variety of load balancing mechanisms are possible. For
example, the dispatcher 220 may load balance by determin
ing a utilization rate among connection managers 230 acces
sible by the dispatcher 220. For example, the utilization rate
may refer to a number of the connection manager's network
connections. After selecting a connection manager 230, the
dispatcher 220 transfers the connection 215 to it through the
IPC socket connection 225. As part of transferring a network
connection, the dispatcher 220 stores a connection state in
state store 250. The connection state describes the network
connection 215 and associates the network connection with
the selected connection manager 230. Establishing a con
nection 217 is described in further detail with respect to FIG.
3.
The connection manager 230 maintains network connec

tions transferred from the dispatcher 220. The connection
manager 230 sends and receives messages through network
connection 217. The connection manager 230 stores
received messages by storing the message body, the message
header, or both in state store 250. The connection manager
230 notifies message router 240 of the received message by
forwarding a reference to the message to messaging queue
235. For example, the connection manager 230 generates a
handle to identify the message. The handle may correspond
to the storage address of the message in the state store 250.
The connection manager 230 transfers the handle, the mes
sage header, or both to the message router 240 through the
messaging queue 235.

Additionally, connection managers 230 process (e.g.,
assemble, send, delete) messages in response to message
routing instructions received from the message router 240
through the messaging queue 235. For example, a message

10

15

25

30

35

40

45

50

55

60

65

8
routing instruction to send a message includes a message
header and a message handle. The connection manager 230
accesses the message body corresponding to the message
handle from the queue 235, assembles a message including
the message body and the message header, and sends the
message to one or more recipient client applications based
on the topic identified by the message header. For example,
the connection manager 230 sends the message through
network connection 217 to the client application 205 on the
client device 110.

Because a message may be sent to multiple recipients,
multiple connection managers 230 may share access to the
message in the shared memory 250. To ensure that a
message is retained until it has been sent to all intended
recipients, the connection manager 230 may access and
update a completion state associated with the message in the
shared memory 250. The completions state indicates
completion of routing instructions related to a message. For
example, in response to a routing instruction to send a
message, the connection manager 230 updates the comple
tion state to reflect completion of the routing instruction. In
response to a routing instruction to delete a message, a
connection manager 230 compares the completion state with
a completion condition included in the routing instruction to
delete the message. If the completion state fulfills the
completion condition, the connection manager 230 deletes
the message. If the completion state does not fulfill the
completion condition, the connection manager will simply
leave the message as is, as it is presumed that another
connection manager still needs to act on a routing instruction
with the message in order to fulfill the completion condition.
The message router 240 receives a reference to a received

message from a connection manager 230 and generates
routing instructions for one or more connection managers
230 to deliver the message. The reference to the received
message may include a message handle, a message header,
or both. The message router 240 determines one or more
topic identifiers of the message based on the message header.
For example, for a broadcast message, the message router
240 determines recipient client applications 205 that are
subscribed to a topic indicated by a topic identifier in the
message header. The message router 240 then determines the
network connections 217 corresponding to the recipient
client applications 205, and determines the connection man
agers corresponding to the determined networked connec
tions 217. The message router 240 sends those connection
managers 230 routing instructions to send the message to the
recipient client applications 205 using the determined con
nections 217. The routing instructions include a message
handle as well as a message header that may include the
topic identifier and in Some instances the messaging mode as
well. The routing instruction is delivered over the messaging
queue 235 to a particular connection manager 230 in the
same order they were sent by the message router 240 to
ensure predictable behavior. For example, ensuring in-order
delivery of instructions to a connection manager 230 ensures
that the recipient client application 205 receives the mes
sages in the same order they were sent by the sender client
application 205.
The message router 240 maintains a routing state that is

associated with a message in State store 250. The routing
state of a message corresponds to the routing instructions
issued to connection managers 230. For example, as part of
issuing a routing instruction, the message router 240 updates
the message’s routing state to reflect that the routing instruc
tion has been sent to the connection manager 230. When the
message router 240 sends a last routing instruction pertain

US 9,712,398 B2
9

ing to a message handle, the message router 240 determines
a completion condition and attaches the completion condi
tion to the last routing instruction. In one embodiment, the
completion condition is the touch count. The last routing
instruction may either be the last substantive action to be
taken with respect to the message, or it may be an additional
routing instruction sent after the routing instruction handling
the last substantive action to explicitly request deletion of
the message identified by the message handle when an
included completion condition is fulfilled. Using the
completion condition, the connection managers 230 tasked
with fulfilling the last routing instruction can independently
verify whether the message is ready for deletion.
The state store 250 maintains state information accessible

to at least a subset of the component programs 220, 230, and
240 and maintained by the component programs, as
described above. The state information includes message
bodies, message headers, a completion state, a routing state,
and a connection state. In some embodiments, the state store
250 is segmented so that different modules may access and
modify only a subset of the state information.
The state store 250 may contain message payloads acces

sible to the connection managers 230, and message headers
accessible to the message router 240. Additionally, the
connection managers 230 and message router 240 pass
message headers between them through messaging queue
235. The state store 250 further contains a table of connec
tion states describing the network connections 215 and 217.
The connection states are accessible by the connection
managers 230, the dispatcher 220, or both. For example, the
table entry for a network connection 217 may include any
one or more of a socket used by the corresponding connec
tion manager 230, an assigned UID of the socket or corre
sponding client application 205, and authentication infor
mation.
The state store 250 is hosted on memory allocated inde

pendently from the dispatcher 220, and message router 240,
so a planned restart and/or update to any of these programs
will not result in the loss of the state information.

Updates to the dispatcher 220 may result in delays to
establishing new connections, but the connection manager
230 may maintain existing connections while the dispatcher
220 is updated. Similarly, updates to the message router 240
may delay routing of received messages, but the state store
250 that contains the received messages, routing state, and
completion state is not affected by changes to the message
router 240.
Establishing a Connection with a Client Application

FIG. 3 is an interaction diagram illustrating a client
application establishing a connection with the messaging
system, in accordance with an embodiment. The client
device 110A (e.g., client application 205) initiates 310
network connection 215 with the dispatcher 220. The client
device 110A initiates 310 the connection by contacting the
dispatcher 220 at a socket and waits for establishment of the
network connection 215. The dispatcher 220 accepts the
network connection 215 and acknowledges the establish
ment of network connection 215 to the client device 110A.
The dispatcher 220 selects 320 a connection manager 230.

As described previously, the dispatcher 220 selects 320 the
connection manager 230 to ensure load balancing among
connection managers 230. The dispatcher 220 transfers 330
the connection to the selected connection manager 230. To
transfer the connection the dispatcher 220 generates a UID
for the network connection 215 and identifies host informa
tion of the client application 205 and/or the client device
110A. The dispatcher 220 sends the UID for the network

10

15

25

30

35

40

45

50

55

60

65

10
connection and the host information through IPC socket
connection 225. The host information may include a socket
assigned to the client device 110A or the client application
205, or some other signifier of where the connection is to
route messages so that they arrive at the client application
205.
The connection manager 230 requests 340 a session from

the message router 240. For example, the connection man
ager 230 may request 340 the session by sending a data
object including the host information (or the UID) to mes
sage router 240 through messaging queue 235. The message
router 240 establishes 350 a session based on any received
information. For example, establishing a session may
include the message router 240 generating a confirmation
message and storing the confirmation message in the State
store 250. The confirmation message may include the
received information. The message router 240 instructs 360
the connection manager 230 to send the confirmation mes
sage to the client device 110A. For example, the message
router 340 generates and sends a routing instruction to the
connection manager 230 through messaging queue 235. In
response to the routing instruction, the connection manager
230 establishes network connection 217 and sends the
confirmation message to the client device 110A through the
network connection 217. Network connection 217 is estab
lished at a different socket from the socket used by the
dispatcher 220 to accept network connection 215.
The client device 110A (e.g., client application 205)

accepts the network connection 217. The client device 110A
also sends 380 a response message to the connection man
ager 230 through network connection 217. The response
message includes information identifying the client appli
cation 205. Such as a program type of the client application
205 and instance name of the client application 205. The
connection manager 230 stores the response message in the
State Store 250 and forwards 390 the reference to the
response message to the message router 240. Using the
response message, the message router 240 infers that net
work connection 217 is active and stores the connection in
association with the data object (e.g., UID, host information)
used to generate the connection in the state store 250.
Subsequently, the message router 240 instructs 235 the
connection manager 230 to route a message to client appli
cation 205 over network connection 217.

In response to a loss of network connection 217, the client
application 205 may attempt to re-establish a connection by
initiating network connection 215 with the dispatcher 220.
In response to a loss of network connection 217, the con
nection manager 230 sends a data object to the message
router 240 indicating the UID of the lost network connection
217. The message router 240 removes the session state it is
maintaining in State store 250, and Subsequently does not
issue instructions for the connection manager 230 to route
any more messages through the lost network connection
217.
Sending a Message Between Client Applications

FIG. 4 is an interaction diagram illustrating a client
application 205 sending a message to the messaging system,
and the messaging system delivering the message, in accor
dance with an embodiment. In some embodiments, the
method may include different and/or additional steps than
those described in conjunction with FIG. 4. Additionally, in
Some embodiments, the method may perform the steps in
different orders than the order described in conjunction with
FIG. 4. Such as performing steps in parallel.
The client device 110A (e.g., client application 205) sends

405 a message through network connection 217. In response

US 9,712,398 B2
11

to receiving the message, connection manager 230A stores
the message in state store 250 and generates 410 a message
handle. For example, the message handle identifies the
message's storage location in the state store 250. The
connection manager 230A forwards 420 the message to the
message router 240. To forward the message, the connection
manager 230A forwards the message handle and message
header to the message router 240.

The message router 240 determines 430 routing instruc
tions for connection managers 230, including a routing
instruction for connection manager 230B. The message
router 240 determines 430 routing instructions by determin
ing one or more recipient client applications 205 from the
message header. For example, the message router 240 deter
mines a recipient client application from the messaging
mode and the one or more topic identifiers. The message
router 240 identifies client applications 205 subscribed to the
topic corresponding to the topic identifier included in the
message header. For each identified client application 205,
the message router 240 generates a routing instruction
including the message handle and recipient handle. The
message router 240 may generate other routing instructions,
Such as a routing instruction to delete a message once the
message is sent to all its recipient client applications 205.
The message router 240 sends 440 routing instructions to

the connection manager 230B through messaging queue
235. To send 440 a routing instruction, the message router
240 accesses a mapping between topic identifiers and estab
lished sessions in state store 250 to identify the appropriate
connection manager 230B that can service client applica
tions 205 through corresponding network connections 217
by accessing a mapping between topic identifiers and the
network connections 217. The connection manager 230B
sends 450 the message to the client device 110B.
Messaging System Security
The messaging system 120 may further include computer

code to authenticate network connections from remote pro
grams. Remote programs include individual client applica
tions 205 on a client device 110, individual client applica
tions 205 on the same host as the messaging server 120, and
as well as another instance of the messaging server 120.
Authentication refers to Verifying that a remote program is
associated with a particular profile having given authoriza
tions in the messaging system. In the context of a client
application 205, the profile may, for example, grant autho
rizations to Subscribe to particular topics, to publish mes
Sages to particular topics, to send messages (e.g., responses,
requests) to particular client applications 205, or to receive
messages from particular client applications 205. A compo
nent program is executed under a particular user identity,
which determines whether a component program has autho
rization to access particular segments of the state store 250,
to invoke kernel functions of the operating system (e.g.,
instantiating an IPC), or to instantiate component programs.
For example, only a component program running under a
root user identity may access a segment of the state store 250
containing secure information (e.g., private keys) or invoke
kernel functions of the operating system.
A remote program may substantiate its identity through a

combination of one or more authentication mechanisms,
including a user name and password challenge, process
inspection, certificate-based authentication, or authentica
tion transfer. A user name and password challenge refers to
providing a user name entered through a GUI as well as a
hash of a password entered through the GUI. This authen
tication is applicable to client applications 205 directly
invoked by a user through a GUI but is inapplicable to

10

15

25

30

35

40

45

50

55

60

65

12
automatically started client applications 205 as well as
component programs of the messaging server 120.

Certificate-based authentication refers to authentication of
remote programs by exchanging information encrypted
using a key. Certificate-based authentication includes asym
metric encryption schemes, where a remote program Sub
stantiates its identity by proving that it has access to a private
key. For example, a remote program may substantiate its
identity by responding to a challenge String sent by the
message router 240 with a digital signature that includes a
hash encrypted with the private key of the remote program.
Certificate-based authentication may alternatively or addi
tionally include symmetric encryption schemes, where the
remote program and the dispatcher both have access to a
shared secret or key, Such as a secret generated through a
Diffie-Hellman key exchange. An example of certificate
based authentication is described in further detail with
respect to FIG. 5, described in the section titled “Authenti
cating Network Connections' below.
Authenticating Network Connections

FIG. 5 is an interaction diagram illustrating an example
process of authenticating a network connection, in accor
dance with an embodiment. In the illustrated example, the
messaging server 120 authenticates a remote program
executed by client device 110 that has established network
connection 217 with a connection manager 230.
The remote program is generally a client application 205

with a network connection 217 having been transferred from
the dispatcher 220 after initiating network connection 215.
However, the messaging server 120 may also use the process
of FIG. 5 to authenticate a component program of another
messaging server 120 (thus replacing the client device 110
in FIG. 5 and the following description with another mes
saging server (not shown)). The message router 240 sends
515 a challenge string to the client device 110 through
network connection 217. To send 515 the challenge string,
the message router 240 generates a challenge string con
taining data unique to the incoming connection, and stores
the unique challenge string in association with the network
connection 217. To generate the challenge string, the mes
sage router 240 may use an approved public key (e.g., a root
public key) associated with the remote program and acces
sible to the message router 240. The approved public key is
paired with a root private key accessible to the remote
program.
The remote program generates 520 a response to the

challenge String. To generate 520 the response, the remote
program accesses a private key generated from the root
private key paired with the approved public key. The remote
program generates a signature on the challenge string using
the private key. Generating the signature on the challenge
string may include operations such as decoding the chal
lenge String using the private key. The remote program sends
525 the dispatcher 220 a response to the challenge string.
The response includes the signature on the challenge string
and a copy of the public key corresponding to the private
key. For example, the response may be encoded in a format
such as PKCSif7 (Public Key Cryptography Standard #7).
The message router 240 receives the response to the

challenge string and checks 530 the response. Checking the
response includes determining whether the signature on the
response corresponds to the public key included in the
response. Checking 530 the response may also include
retrieving the challenge issued to authenticate the network
connection and determining whether the received response
matches the expected response to the retrieved challenge.
Checking the response against the challenge string prevents

US 9,712,398 B2
13

a replay attack where a malicious user sends a response
generated by the remote program in response to a previous
challenge String.

Checking 530 the response further includes determining
whether the public key included in the response is valid by
determining whether there is a chain of trust between the
public key and the approved public key. For example, a
chain of trust exists when the public key in the response is
an approved public key or has been signed by an approved
public key. Verifying the chain of trust between the public
key and an approved public key may be a recursive process.
The message router 240 identifies the parent public key used
to sign the public key included in the response and deter
mines whether there is a chain of trust between the parent
public key and an approved public key. Once a parent public
key is identified that is an approved public key, the chain of
trust is validated. If the recursive process identifies a parent
public key that is not an approved public key and that has not
been signed by any other public key, then the chain of trust
is invalid.

In response to determining that the response matches the
challenge string, the message router 240 determines that the
identity of the remote program is authenticated, and the
message router 240 allows the client application 205 to
begin sending and receiving messages through network
connection 217. In response to determining that the response
does not match the challenge string, the message router 240
determines that the remote program does not have a valid
identity, and the message router 240 terminates the corre
sponding network connection 217 through an instruction to
the connection manager 230.
Authentication Transfer
A messaging environment refers to a plurality of messag

ing server nodes connected to each other. The messaging
server nodes in a given messaging environment can only
communicate with other messaging server nodes in the same
messaging environment. However, Some client applications
205 may connect to and interact with multiple segregated
messaging environments (e.g., messaging environments in
different organizations).

To this end, authentication transfer refers at a high level
to a client application 205 leveraging an authentication
previously done with a messaging server 120A in messaging
environment A as a credential to authenticate to a new
messaging server 120B in a new messaging environment B.
When connecting to the new messaging server 120B, the
client application 205 receives a challenge string from the
new messaging server 120B as part of receiving a unique
challenge string for certificate-based authentication (e.g.,
step 515 in FIG. 5). Upon receipt of this challenge string, the
client application 205 generates an authentication transfer
ticket request and sends it to the messaging server 120A. The
authentication transfer ticket request contains this new chal
lenge string. The message router 240 on the messaging
server 120A signs the authentication transfer ticket with its
own private key and returns an authentication transfer ticket
response to the client application 205. The client application
205 in turn submits a login request based on the authenti
cation transfer ticket response to the new messaging server
120B, which decrypts the signature, verifies the validity of
the user name and original network, and acknowledges to
the client application 205 that this constitutes a successful
authentication. Thus, authentication transfer obviates a user
entering a user name and password when Switching between
messaging servers in different messaging environments.

FIG. 6 is an interaction diagram illustrating in detail an
example process of transferring authentication for a client

10

15

25

30

35

40

45

50

55

60

65

14
device between messaging servers, in accordance with an
embodiment. A client application 205 of client device 110 is
maintaining 600 an initial network connection 217 with
messaging server 120A. The initial network connection 217
has been authenticated, such as through certificate-based
authentication. The client device 110A initiates 605 a net
work connection 215 with messaging server 120B, which is
remote relative to messaging server 120A. For example,
messaging server 120A is affiliated with organization A,
messaging server 120B is affiliated with to a different
organization B, and the client application 205 that was
already connected and authenticated to messaging server
120A is attempting to communicate with organization B via
messaging server 120B. This mechanism allows client appli
cation 205 to authenticate to messaging server 120B without
prompting the user for credentials for messaging server
120B's organization (organization B in this example). This
mechanism is not limited to cross-organization communi
cation. A client application 205 may also use the authenti
cation transfer mechanism to connect to another messaging
server 120 in the same organization as messaging server
120A without providing user name and password creden
tials.
The messaging server 120B sends 610 a greeting message

including a challenge string. For example, the greeting
message includes a 24-byte challenge string and a messag
ing system version number, and the greeting message is
delivered through a secure Socket connection. The client
device 110 receives the greeting message and sends 615 the
messaging server 120B a response to the greeting message.
The messaging server 120B begins waiting for a login
request after receiving the response to the greeting message.
The client device 110 generates and sends 620 an authen

tication transfer ticket request (“authentication request’) to
the messaging server 120A, which has already authenticated
the identity of the client application 205. The authentication
request is message with a header indicating that the message
is an authentication request. The header includes a source
identifier corresponding to the authentication request. The
body of the authentication request includes the challenge
string sent by the messaging server 120B. The messaging
server 120A generates an authentication transfer ticket
response ("authentication response') including a signed
authentication credential. The messaging server 120A signs
625 the authentication credential using a private key. The
authentication response is a message having a header indi
cating that the message is an authentication response. The
header includes the source identifier from the authentication
request, and the body of the authentication response includes
the signed authentication credential (e.g., the challenge
string encrypted using a signature of the messaging server
120A). The messaging server 120A sends 630 the authen
tication response to the client device 110.
The client device 110 generates and sends 635 a login

request to the messaging server 120B. The login request is
a message containing a user name of the client application
205, messaging environment metadata, and the signed
authentication credential from the authentication response.
Messaging environment metadata describes the organization
corresponding to a messaging environment (e.g., a messag
ing system code for the organization, an abbreviation of the
organization) as well as other characteristics of the messag
ing environment. The messaging server 120B checks 640 the
login request by: (1) decrypting the challenge string and
confirming the challenge string matches the challenge string
sent in the greeting message; (2) confirming that the authen
ticated challenge string has a format consistent with an

US 9,712,398 B2
15

authentication transfer ticket response; (3) checking the
signature on the authenticated challenge string is valid; (4)
verifying that the signer is a messaging server, Such as 120A,
that is authorized to issue authentication transfer responses;
and (5) checking that the client application 205 (and/or
client device 110) is authorized to generate authentication
transfer requests for the destination client application 205
associated with the messaging server 120B. If the messaging
server 120B determines that the login request is invalid
(because any of steps (1) through (5) are invalid), the
messaging server 120B closes the network connection 215
with the client device 110.

If the login request passes the checks, the messaging
server 120B requests verification of the user name and
messaging environment metadata included in the login
request by generating and sending 645 a user verification
request to an authentication server 601. The authentication
server 601 maintains a registry of valid user names and
associated messaging environment metadata to provide a
further check on information contained in the login request.
For example, the authentication server queries LDAP on
behalf of messaging server 120B to verify the information in
the login request. LDAP contains metadata about user
accounts, such as user names, passwords, and associated
messaging environment metadata (e.g., organization abbre
viations). The user verification request indicates that it is a
user verification request and includes the user name and
abbreviation of the client applications organization from the
login request. The user verification request may further
include a header indicating that the user verification request
is a semaphore type message. The header also includes the
source identifier of the client application 205. The authen
tication server 601 verifies 650 the information contained in
the user verification request to ensure that (1) the user name
is valid and (2) the messaging environment metadata
matches the user name.

In response to successfully verifying 650 the information
included in the user verification request, the authentication
server 601 generates and sends 655 a user verification
response to the messaging server 120B and the client device
110. The user verification response is a message including a
header indicating the message is a user verification response.
The header of the user verification response includes the
Source identifier and a code corresponding to the organiza
tion of the client application 205.

In response to receiving the user verification response
indicating verification of the user name, the messaging
server 120B accepts the network connection 215 with the
client device 110. If the user verification response indicates
that the user name is invalid, or if the other information in
the user verification request does not match the user name,
the messaging server 120B closes the network connection
215.
Authenticating Component Program Identity

FIG. 7 is an interaction diagram illustrating an example
process of authenticating identity of a component program,
in accordance with an embodiment. In the illustrated
example, the messaging server 120 establishes a chain of
trust between the dispatcher 220 and another program com
ponent (e.g., a message router 240, a connection manager
230). By establishing the chain of trust between the program
components, the messaging server 120 may send secure
information between the program components through an
IPC socket connection (e.g., 225 or 227).
The dispatcher 220 connects 705 to shared memory

contained in state store 250. The dispatcher 220 may connect
705 to the shared memory in response to the messaging

10

15

25

30

35

40

45

50

55

60

65

16
server 120 powering on or restarting, for example. The
messaging server 120 initializes the dispatcher 220 as a root
user. A root user refers to an identity having permissions not
available to other component programs of the messaging
server 120. As a root user, the dispatcher 220 may instantiate
another component program, instantiate an IPC connection
between component programs, temporarily change its own
identity to another user having fewer authorizations, and
read and write to shared memory accessible only by a root
user. The dispatcher 220 determines whether the state store
250 contains shared memory for the dispatcher 220. If the
state store 250 contains a dispatcher shared memory, the
dispatcher 220 reconnects to the dispatcher shared memory.
If the state store 250 does not contain the dispatcher shared
memory, the dispatcher 220 allocates the dispatcher shared
memory and connects to it. As part of allocating the dis
patcher shared memory, the dispatcher 220 sets the dis
patcher shared memory to allow read and write access only
to component programs having a root user identity.
The dispatcher 220 begins listening on an IPC server

socket connection 225 or 227 used by the connection
manager 230 and the message router 240 to connect to the
dispatcher 220.
The dispatcher 220 determines whether the messaging

server 120 is executing a message router 240 and a connec
tion manager 230. If the messaging server 120 is executing
the message router 240 and the connection manager 230, the
process continues to step 720. If one or both of these
components is not running on the messaging server 120, the
dispatcher 220 instantiates 715 whichever of them is not
running. To do this, the dispatcher 220 changes its identity
to a reduced or minimal permissions user identity, such as
one used to create 710 the IPC socket connections 225 and
227. Using the user identity, the dispatcher 220 instantiates
715 the message router 240 and/or the connections manager
230. The dispatcher 220 stores a process identifier and the
start time of the message router 240 and/or the connection
manager 230, as well as the corresponding user identity, in
the dispatcher shared memory (reverting to the root user
identity first if necessary). These stored items of information
may be referred to as “instantiation information for con
venience, and may be used to verify the identity of the
process when it requests private keys and other secure
information. The dispatcher 220 then reverts its identify to
the root user identity.
The message router 240 and connection manager 230

open connections 225 and 227, respectively with to the IPC
server socket that the dispatcher 220 opened previously.
As a final set of steps in establishing a secure connection

to the dispatcher 220, the message router 240 or the con
nection manager 230 requests 725 the private key over 225
and 227, respectively. In response to the request, the dis
patcher 220 verifies 730 the identity of the message router
240 or connection manager 230. To do this, the dispatcher
220, as the root user identity, queries the operating system of
the messaging server 120 for the user identity, the process
identifier, and/or start time of the message router 240 or
connection manager 230 making the request. The dispatcher
220, as the root user identity, also queries the dispatcher
shared memory for the process identifier, start time, and/or
corresponding user identifier associated with the request.
The dispatcher 220 compares the process identifier, start
time, and/or corresponding user identity accessed from the
dispatcher shared memory with those of the requesting
message router 240 or connection manager 230. If all of the
process identifier, start time, and/or corresponding user
identity match between the dispatcher shared memory and

US 9,712,398 B2
17

requesting component, the dispatcher 220 sends 735 the
private key (or other requested secure information) to the
requesting message router 240 or connection manager 230
through the corresponding IPC socket 225 or 227.

If any of the process identifier, start time, and/or corre
sponding user identifier do not match, the dispatcher 220
closes the IPC Socket 225 or 227 and/or the network
connection 217 corresponding to the request.
The dispatcher 220 obtains the private key from a client

device 110 that has initiated an authenticated connection, as
described in conjunction with FIG. 3. To obtain the private
key, the dispatcher 220 accesses an encrypted version of the
private key using a public file system mount. For example,
the file system mount is an NFS (Network File System)
mount. The dispatcher 220 decrypts the encrypted private
key and stores the encrypted private key in process memory
of the dispatcher. Alternatively, the dispatcher 220 stores the
encrypted private key in dispatcher shared memory or other
memory accessible to the dispatcher 220 and not accessible
to the message router 240 and connection managers 230. To
decrypt the private key, the dispatcher 220 may, for example,
use symmetric key decryption (e.g., Advanced Encryption
Standard (AES)), assuming the key was encrypted accord
ingly. To do this, the dispatcher 220 may change its identity
to a key access user identity having access to the symmetric
key, load the symmetric key from a private file system
mount accessible only to the key access user identity, and
decrypt the private key using the loaded symmetric key. The
dispatcher 220 then reverts its identify to the root user
identity. The dispatcher 220 may access the encrypted
private key during a TLS (transport layer security) session or
prior to establishing a TLS session. To establish a TLS
session, the message router 240 instructs the connection
manager 230 to establish the TLS session after confirming
the network connection 217 (e.g., step 370 in FIG. 3). After
establishing the TLS session, the connection manager 230
may use the decrypted private key to upgrade the network
connection 217 to an encrypted TLS connection.
The dispatcher 220 also secures the IPC messages queues

235 between connection managers 230 and the message
router 240. This allows connection managers 230 and the
message router 240 to trust each other. The dispatcher 220
determines whether the message queues 235 exist on the
messaging server 120. If the corresponding message queues
235 exist, the dispatcher continues to step 715. If the
corresponding message queues 235 do not exist, the dis
patcher 220 creates message queues 235 (e.g., immediately
before, immediately after, or concurrently with step 710). To
do this, the dispatcher 220 changes its identity to a reduced
or minimal permissions user identity, which is a preconfig
ured account used permanently by the message router 240
and the connection managers 230, and temporarily by the
dispatcher 220. Using the minimal permissions user identity,
the dispatcher 220 then creates the message queues 235 and
sets permission for the message queues 235 So that only a
user with those same user identity permissions user may
connect. The dispatcher 220 then reverts its identify to the
root user identity.
Additional Configuration Information

In the client device 110 and messaging system 120, the
program code and modules implementing the functionality
described herein are not native components of underlying
machine or system, and thus extend the operations and
functionality thereof beyond their generic functions and
capabilities. The client device 110 includes a client appli
cation 205, and the messaging system 120 includes a dis
patcher 220, a connection manager 230, a message router

10

15

25

30

35

40

45

50

55

60

65

18
240, a state store 250. Those of skill in the art will appreciate
that these databases, information, data structures, program
code, and modules are not components of a generic com
puter, and that the client device 110 messaging system 120
may contain other databases, program code, or modules that
are not explicitly mentioned here. Additionally, the opera
tions listed here are necessarily performed at Such a fre
quency and over Such a large set of data that they must be
performed by a computer in order to be performed in a
commercially useful amount of time, and thus cannot be
performed in any useful embodiment by mental steps in the
human mind.
Some portions of the above description describe the

embodiments in terms of algorithmic processes or opera
tions. These algorithmic descriptions and representations are
commonly used by those skilled in the data processing arts
to convey the substance of their work effectively to others
skilled in the art. These operations, while described func
tionally, computationally, or logically, are understood to be
implemented by computer programs comprising instructions
for execution by a processor or equivalent electrical circuits,
microcode, or the like. Furthermore, it has also proven
convenient at times, to refer to these arrangements of
functional operations as modules, without loss of generality.
The described operations and their associated modules may
be embodied in Software, firmware, hardware, or any com
binations thereof.
As used herein any reference to “one embodiment” or “an

embodiment’ means that a particular element, feature, struc
ture, or characteristic described in connection with the
embodiment is included in at least one embodiment. The
appearances of the phrase “in one embodiment in various
places in the specification are not necessarily all referring to
the same embodiment.
As used herein, the terms "comprises,” “comprising.”

“includes,” “including,” “has.” “having or any other varia
tion thereof, are intended to cover a non-exclusive inclusion.
For example, a process, method, article, or apparatus that
comprises a list of elements is not necessarily limited to only
those elements but may include other elements not expressly
listed or inherent to Such process, method, article, or appa
ratus. Further, unless expressly stated to the contrary, 'or'
refers to an inclusive or and not to an exclusive or. For
example, a condition A or B is satisfied by any one of the
following: A is true (or present) and B is false (or not
present), A is false (or not present) and B is true (or present),
and both A and B is true (or present).

In addition, use of the 'a' “an are employed to a O

describe elements and components of the embodiments
herein. This is done merely for convenience and to give a
general sense of the disclosure. This description should be
read to include one or at least one and the singular also
includes the plural unless it is obvious that it is meant
otherwise.
Upon reading this disclosure, those of skill in the art will

appreciate still additional alternative structural and func
tional designs for a system and a process for authenticating
network connections and component program identities in a
messaging system. Thus, while particular embodiments and
applications have been illustrated and described, it is to be
understood that the described subject matter is not limited to
the precise construction and components disclosed herein
and that various modifications, changes and variations
which will be apparent to those skilled in the art may be
made in the arrangement, operation and details of the
method and apparatus disclosed herein.

US 9,712,398 B2
19

What is claimed is:
1. A method of authenticating component programs in a

messaging system where the component programs includes
at least one from a group consisting of a dispatcher, a
message router, and a connection manager, the method
comprising:

storing a private key in a memory accessible by a root user
identity;

creating an inter-process communication (IPC) Socket
connection with a component program that is either a
message router or a connection manager,

determining that the component program is running,
wherein the component program does not have permis
sion to access the memory storing the private key:

connecting the component program to the IPC Socket
connection; and

responsive to the component program connecting the IPC
Socket connection:

obtaining a first set of instantiation information describing
the component program from shared memory;

obtaining a second set of instantiation information from
an operating System regarding the component program;

comparing the first instantiation information to the second
instantiation information; and

responsive to the first instantiation information matching
the second instantiation information, sending the com
ponent program the private key through the IPC Socket
connection.

2. The method of claim 1, wherein storing the private key
in the memory comprises:

obtaining the private key from the client device by a
second component program having the root user iden
tity; and

storing, by the second component program, the private
key in the memory accessible by the root user identity.

3. The method of claim 2, wherein the second component
program is the dispatcher, and wherein the memory storing
the private key is a process memory of the dispatcher.

4. The method of claim 1, wherein creating the IPC socket
connection comprises:

changing to a reduced permissions user identity with
permission to access the shared memory, wherein the
user identity does not have permission to access the
memory storing the private key; and

setting permission of the IPC Socket connection to only
allow connection by a component program having a
permission level of the reduced permissions user iden
tity.

5. The method of claim 4, wherein determining that the
component program is running comprises:

instantiating the component program using the reduced
permissions user identity; and

storing the first set of instantiation information in the
shared memory.

6. The method of claim 1, wherein obtaining the first set
of instantiation information describing the component pro
gram from the shared memory is performed using the root
user identity.

7. The method of claim 1, further comprising responsive
to the first set of instantiation information not matching the
second set of instantiation information, closing the IPC
Socket connection.

8. A non-transitory computer readable storage medium
having instructions encoded thereon for authenticating com
ponent programs in a messaging system where the compo

10

15

25

30

35

40

45

50

55

60

20
nent programs include at least one from a group consisting
of a dispatcher, a message router and a connection manager,
wherein the instructions, when executed by a processor,
cause the processor to:

store a private key in a memory accessible by a root user
identity;

create an inter-process communication (IPC) socket con
nection with a component program that is either a
message router or a connection manager,

determine that the component program is running,
wherein the component program does not have permis
sion to access the memory storing the private key:

connect the component program to the IPC Socket con
nection; and

responsive to the component program connecting the IPC
Socket connection:

obtain a first set of instantiation information describing
the component program from shared memory;

obtain a second set of instantiation information from an
operating System regarding the component program;

compare the first instantiation information to the second
instantiation information; and

responsive to the first instantiation information matching
the second instantiation information, send the compo
nent program the private key through the IPC socket
connection.

9. The medium of claim 8, wherein storing the private key
in the memory comprises:

obtaining the private key from the client device by a
second component program having the root user iden
tity; and

storing, by the second component program, the private
key in the memory accessible by the root user identity.

10. The medium of claim 9, wherein the second compo
nent program is the dispatcher, and wherein the memory
storing the private key is a process memory of the dis
patcher.

11. The medium of claim 8, wherein creating the IPC
Socket connection comprises:

changing to a reduced permissions user identity with
permission to access the shared memory, wherein the
user identity does not have permission to access the
memory storing the private key; and

setting permission of the IPC Socket connection to only
allow connection by a component program having a
permission level of the reduced permissions user iden
tity.

12. The medium of claim 11, wherein determining that the
component program is running comprises:

instantiating the component program using the reduced
permissions user identity; and

storing the first set of instantiation information in the
shared memory.

13. The medium of claim 8, wherein obtaining the first set
of instantiation information describing the component pro
gram from the shared memory is performed using the root
user identity.

14. The medium of claim 8, further comprising instruc
tions to cause the processor to close the IPC Socket connec
tion responsive to the first set of instantiation information
not matching the second set of instantiation information.

k k k k k

